Filtry
wszystkich: 2432
wybranych: 1870
-
Katalog
- Publikacje 1870 wyników po odfiltrowaniu
- Czasopisma 112 wyników po odfiltrowaniu
- Konferencje 109 wyników po odfiltrowaniu
- Osoby 100 wyników po odfiltrowaniu
- Projekty 5 wyników po odfiltrowaniu
- Kursy Online 47 wyników po odfiltrowaniu
- Wydarzenia 4 wyników po odfiltrowaniu
- Dane Badawcze 185 wyników po odfiltrowaniu
Filtry wybranego katalogu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: artificial neural networks
-
Multiservice Optical Fibre Local Area Networks For Data Transmission And Telemetry In The Electric Power Industry
Publikacja -
SNAIL Promotes Metastatic Behavior of Rhabdomyosarcoma by Increasing EZRIN and AKT Expression and Regulating MicroRNA Networks
Publikacja -
Deformation Analysis of Geodetic Networks by Applying M split Estimation with Conditions Binding the Competitive Parameters
Publikacja -
A novel class-based protection algorithm providing fast service recovery in IP/WDM networks
PublikacjaW artykule rozważa się warstwową strukturę sieci IP-MPLS/WDM. Węzły sieci mają funkcjonalność zarówno optycznych krotnic transferowych (OXC), jak i routerów IP. Dowolne dwa routery IP mogą być ze sobą połączone poprzez logiczne łącze IP realizowane przez ścieżkę optyczną WDM. Zaproponowano metodę klasową doboru tras przeżywalnych zapewniającą szybkie odtwarzanie uszkodzonych strumieni ruchu zarówno w warstwie WDM jak i IP-MPLS....
-
Set membership estimation of parameters and variables in dynamic networks by recursive algorithms with moving measurment window
PublikacjaW artykule rozważana jest łączna estymacja przedziałowa zmiennych i parametrów w złożonej sieci dynamicznej w oparciu niepewne modele parametryczne i ograniczoną liczbę pomiarów. Opracowany został rekursywny algorytm estymacji z przesuwnym oknem pomiarowym, odpowiedni dla monitorowania sieci on-line. Okno pomiarowe pozwala na stabilizowanie klasycznego algorytmu rekurencyjnego estymacji i znacznie poprawienie obcisłości estymat....
-
Testbed analysis of video and VoIP transsmission performance in IEEE 802.11 b/g/n networks
PublikacjaThe aim of the work is to analyze capabilities and limitations of different implementations of IEEE 802.11 technologies (IEEE 802.11 b/g/n), utilized for both video streaming and VoIP calls directed to mobile devices. Our preliminary research showed that results obtained with currently popular simulation tools can be drastically different than these possible in real-world environment, so, in order to correctly evaluate performance...
-
Genetic and biochemical determinants of serum concentrations of monocyte chemoattractant protein-1, a potential neural tube defect risk factor
Publikacja -
A new analyzer based on pellistor sensor with neural network data postprocessing for measurement of hydrocarbons in lower explosive limit range
PublikacjaW pracy przedstawiono rezultaty pierwszego etapu badań nad nowym typem analizatora do oznaczania stężenia wodoru i lotnych węglowodorów w zakresie dolnej granicy wybuchowości. Analizator ten zbudowano w oparciu o pojedynczy czujnik pelistorowy z układem przetwarzania danych wykorzystującym sztuczną sieć neuronową.
-
Electrical Interface Parameters of PEDOT: PSS: Effect of Electrodeposition Charge Evaluated Under Body Conditions for Neural Electrode Applications
PublikacjaThis study explores the influence of the deposition charge of poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) on its electrical interface parameters. For this purpose, PEDOT:PSS was fabricated by electrodeposition on commercial platinum electrodes with the time limited by different charges (1, 3, 6, 9 mC). Further, the electrodes were characterized regarding their electrical interface such as interfacial...
-
CNN Architectures for Human Pose Estimation from a Very Low Resolution Depth Image
PublikacjaThe paper is dedicated to proposing and evaluating a number of convolutional neural network architectures for calculating a multiple regression on 3D coordinates of human body joints tracked in a single low resolution depth image. The main challenge was to obtain a high precision in case of a noisy and coarse scan of the body, as observed by a depth sensor from a large distance. The regression network was expected to reason about...
-
Oral Health Status and Treatment Needs Based on Artificial Intelligence (AI) Dental Panoramic Radiograph (DPR) Analysis: A Cross-Sectional Study
Publikacja -
Probability estimation of the city’s energy efficiency improvement as a result of using the phase change materials in heating networks
Publikacja -
Selfishness Detection in Mobile Ad Hoc Networks: How Dissemination of Indirect Information Turns into Strategic Issue
PublikacjaDla środowiska sieci mobilnej ad hoc przedyskutowano wymienność pomiędzy wydatkiem energetycznym węzła egoistycznego a obniżaniem jego metryki reputacyjnej. Badania symulacyjne wskazują, że atakom polegającym na selektywnym usuwaniu pakietów można przeciwdziałać poprzez datacentryczny system reputacyjny bazujący na potwierdzeniach końcowych, który nakazuje jednakowo uaktualniać metryki reputacyjne dla wszystkich węzłów na źle zachowującej...
-
Fast service restoration under shared protection at lightpath level in survivable WDM mesh grooming networks
PublikacjaW artykule zaproponowano nowe podejście do optymalizacji rozdziału zasobów w przeżywalnych sieciach optycznych z agregacją strumieni ruchu. Zaproponowana metoda bazuje na wierzchołkowym kolorowaniu grafu konfliktów. Jest pierwszym podejściem, dedykowanym sieciom optycznym z agregację strumieni ruchu z pełną zdolnością do konwersji długości fal, która nie powoduje wydłużenia ściezek zabezpieczjących, a więc zapewnia szybkie odtwarzanie...
-
Towards the 4th industrial revolution: networks, virtuality, experience based collective computational intelligence, and deep learning
PublikacjaQuo vadis, Intelligent Enterprise? Where are you going? The authors of this paper aim at providing some answers to this fascinating question addressing emerging challenges related to the concept of semantically enhanced knowledge-based cyber-physical systems – the fourth industrial revolution named Industry 4.0.
-
Multicast Traffic Throughput Maximization through Dynamic Modulation and Coding Scheme Assignment in Wireless Sensor Networks
Publikacja -
Day-ahead Solar Power Forecasting Using LightGBM and Self-Attention Based Encoder-Decoder Networks
PublikacjaThe burgeoning trend of integrating renewable energy harvesters into the grid introduces critical issues for its reliability and stability. These issues arise from the stochastic and intermittent nature of renewable energy sources. Data-driven forecasting tools are indispensable in mitigating these challenges with their rugged performance. However, tools relying solely on data-driven methods often underperform when an adequate...
-
Open-Set Speaker Identification Using Closed-Set Pretrained Embeddings
PublikacjaThe paper proposes an approach for extending deep neural networks-based solutions to closed-set speaker identification toward the open-set problem. The idea is built on the characteristics of deep neural networks trained for the classification tasks, where there is a layer consisting of a set of deep features extracted from the analyzed inputs. By extracting this vector and performing anomaly detection against the set of known...
-
Prediction of skin color, tanning and freckling from DNA in Polish population: linear regression, random forest and neural network approaches
Publikacja -
Application of Generalized Regression Neural Network and Gaussian Process Regression for Modelling Hybrid Micro-Electric Discharge Machining: A Comparative Study
Publikacja -
A new fuzzy model of multi-criteria decision support based on Bayesian networks for the urban areas' decarbonization planning
Publikacja -
A new approach to inter-layer sharing providing differentiated protection services in survivable IP-MPLS/WDM networks
PublikacjaArtykuł omawia zagadnienie ochrony transmisji o charakterze połączeniowym w sieciach wielowarstwowych IP-MPLS/WDM. W szczególności prezentuje nową metodę współdzielenia międzywarstwowego zasobów ścieżek zabezpieczających gwarantującą szybkie odtwarzanie uszkodzonych połączeń (nawet o 40% szybciej w porównaniu z powszechnie stosowaną metodą).
-
ADAPTIVE PREDICTIONS OF THE EURO/ZŁOTY CURRENCY EXCHANGE RATE USING STATE SPACE WAVELET NETWORKS AND FORECAST COMBINATIONS
PublikacjaThe paper considers the forecasting of the euro/Polish złoty (EUR/PLN) spot exchange rate by applying state space wavelet network and econometric forecast combination models. Both prediction methods are applied to produce one-trading-day- ahead forecasts of the EUR/PLN exchange rate. The paper presents the general state space wavelet network and forecast combination models as well as their underlying principles. The state space...
-
Knowledge management in the IPv6 migration process
PublikacjaThere are many reasons to deploy IPv6 protocol with IPv4 address space depletion being the most obvious. Unfortunately, migration to IPv6 protocol seems slower than anticipated. To improve pace of the IPv6 deployment, authors of the article developed an application that supports the migration process. Its main purpose is to help less experienced network administrators to facilitate the migration process with a particular target...
-
Using Deep Neural Network Methods for Forecasting Energy Productivity Based on Comparison of Simulation and DNN Results for Central Poland—Swietokrzyskie Voivodeship
Publikacja -
Using Deep Neural Network Methods for Forecasting Energy Productivity Based on Comparison of Simulation and DNN Results for Central Poland – Swietokrzyskie Voivodeship
Publikacja -
Growth Performance, Chemical Composition of Fillets, Liver and Intestinal Histology, and Expression of Lipid-Dependent Genes in Common Carp (Cyprinus carpio) Fed Artificial Diets
Publikacja -
Data augmentation for improving deep learning in image classification problem
PublikacjaThese days deep learning is the fastest-growing field in the field of Machine Learning (ML) and Deep Neural Networks (DNN). Among many of DNN structures, the Convolutional Neural Networks (CNN) are currently the main tool used for the image analysis and classification purposes. Although great achievements and perspectives, deep neural networks and accompanying learning algorithms have some relevant challenges to tackle. In this...
-
Machine Learning Applied to Aspirated and Non-Aspirated Allophone Classification—An Approach Based on Audio "Fingerprinting"
PublikacjaThe purpose of this study is to involve both Convolutional Neural Networks and a typical learning algorithm in the allophone classification process. A list of words including aspirated and non-aspirated allophones pronounced by native and non-native English speakers is recorded and then edited and analyzed. Allophones extracted from English speakers’ recordings are presented in the form of two-dimensional spectrogram images and...
-
Fiber optic interface channels for united data and power supply transmission for neutral interaction application in signal transmission networks
Publikacja -
Thermal analysis and experimental verification of permanent magnet synchronous motor by combining lumped-parameter thermal networks with analytical method
Publikacja -
Application of Bayesian networks for inferring cause–effect relations from gene expression profiles of cancer versus normal cells
Publikacja -
Dispersive Delay Structures With Asymmetric Arbitrary Group-Delay Response Using Coupled-Resonator Networks With Frequency-Variant Couplings
PublikacjaThis article reports the design of coupled-resonatorbased microwave dispersive delay structures (DDSs) with arbitrary asymmetric-type group delay response. The design process exploits a coupling matrix representation of the DDS circuit as a network of resonators with frequency-variant couplings (FVCs). The group delay response is shaped using complex transmission zeros (TZs) created by dispersive cross-couplings. We also present an...
-
Rating by detection: an artifact detection protocol for rating EEG quality with average event duration
PublikacjaQuantitative evaluation protocols are critical for the development of algorithms that remove artifacts from real EEG optimally. However, visually inspecting the real EEG to select the top-performing artifact removal pipeline is infeasible while hand-crafted EEG data allow assessing artifact removal configurations only in a simulated environment. This study proposes a novel, principled approach for quantitatively evaluating algorithmically...
-
Determination of eight artificial sweeteners and common Stevia rebaudiana glycosides in non-alcoholic and alcoholic beverages by reversed-phase liquid chromatography coupled with tandem mass spectrometry.
PublikacjaThe method for the determination of acesulfame-K, saccharine, cyclamate, aspartame, sucralose, alitame, neohesperidin dihydrochalcone, neotame and five common steviol glycosides (rebaudioside A, rebaudioside C, steviol, steviolbioside and stevioside) in soft and alcoholic beverages was developed using high-performance liquid chromatography and tandem mass spectrometry with electrospray ionisation (HPLC-ESI-MS/MS). To the best of...
-
Aquaponics Based Artificial Biosphere Included in Architecture: From Mitigation of Negative Impacts to Positive Added Values of Urban Spatial Structures on Local, Regional and Global Scale
PublikacjaTechnologies may appear faster than spatial planning can afford it. Alt hough applying new technologies solve particular problems, it may also create new ones. Many negative consequences of implementing new technologies are visible a fter years or decades – they accumulate until the need of solving them. According to The Hannover Principles (McDonough & Braungart 2013) one should, by example not think about...
-
Neurocontrolled Car Speed System
PublikacjaThe features of the synthesis of neural controllers for the car speed control system are considered in this article. The task of synthesis is to determine the weight coefficients of neural networks that provide the implementation of proportional and proportional-integralderivative control laws. The synthesis of controllers is based on an approach that uses a reversed model of the standard. A model of the car speed control system with...
-
Breast MRI segmentation by deep learning: key gaps and challenges
PublikacjaBreast MRI segmentation plays a vital role in early diagnosis and treatment planning of breast anomalies. Convolutional neural networks with deep learning have indicated promise in automating this process, but significant gaps and challenges remain to address. This PubMed-based review provides a comprehensive literature overview of the latest deep learning models used for breast segmentation. The article categorizes the literature...
-
Optymalizacja zasad koegzystencji sieci standardów Bluetooth i IEEE 802.11 = Optimization of Bluetooth and IEEE 802.11 networks co-existence
PublikacjaZ uwagi na rosnącą popularność standardów Bluetooth (BT) i IEEE 802.11b (Wi-Fi ) można się z nimi spotkać praktycznie wszędzie. Gwałtowny wzrost liczby urządzeń różnych technologii ma także swoje negatywne strony. Stosowanie coraz większej liczby urządzeń różnych systemów radiokomunikacyjnych powoduje wzrost poziomu zaburzeń elektromagnetycznych. W konsekwencji działanie różnych sieci bezprzewodowych pracujących w bliskim zasięgu...
-
Zastosowanie algorytmu ewolucyjnego do uczenia neuronowego regulatora napięcia generatora synchronicznego. Evolutionary algorithm for training a neural network of synchronous generator voltage controller
PublikacjaNajpopularniejsza metoda uczenia wielowarstwowych sieci neuronowych -metoda wstecznej propagacji błędu - charakteryzuje się słabą efektywnością. Z tego względu podejmowane są próby stosowania innych metod do uczenia sieci. W pracy przedstawiono wyniki uczenia sieci realizującej regulator neuronowy, za pomocą algorytmu ewolucyjnego. Obliczenia symulacyjne potwierdziły dobrą zbieżność algorytmu ewolucyjnego w tym zastosowaniu.
-
The Great Five—an artificial bacterial consortium with antagonistic activity towards Pectobacterium spp. and Dickeya spp.: formulation, shelf life, and the ability to prevent soft rot of potato in storage
Publikacja -
Corrosion behaviour of low carbon steel in artificial seawater using TP, LP, EIS, Harmonic Analysis (HA) and new method Dynamic Electrochemical Impedance Spectroscopy (DEIS)
PublikacjaZe względu na istotną rolę technik elektrochemicznych w badaniach procesów korozyjnych są one szeroko stosowane w monitorowaniu korozji. Celem niniejszej pracy jest zgromadzenie rezultatów wyników doświadczalnych uzyskanych różnymi technikami i znalezienie korelacji między nimi. Własności korozyjne stali stopowej (AISI 1026) w sztucznej wodzie morskiej zostały zbadane z wykorzystaniem ekstrapolacji tafelowskiej (TP), polaryzacji...
-
Multicast Traffic Throughput Maximization through Joint Dynamic Modulation and Coding Schemes Assignment, and Transmission Power Control in Wireless Sensor Networks
Publikacja -
Training of Deep Learning Models Using Synthetic Datasets
PublikacjaIn order to solve increasingly complex problems, the complexity of Deep Neural Networks also needs to be constantly increased, and therefore training such networks requires more and more data. Unfortunately, obtaining such massive real world training data to optimize neural networks parameters is a challenging and time-consuming task. To solve this problem, we propose an easy-touse and general approach to training deep learning...
-
Experience-Based Cognition for Driving Behavioral Fingerprint Extraction
PublikacjaABSTRACT With the rapid progress of information technologies, cars have been made increasingly intelligent. This allows cars to act as cognitive agents, i.e., to acquire knowledge and understanding of the driving habits and behavioral characteristics of drivers (i.e., driving behavioral fingerprint) through experience. Such knowledge can be then reused to facilitate the interaction between a car and its driver, and to develop better and...
-
Cognitive motivations and foundations for building intelligent decision-making systems
PublikacjaConcepts based on psychology fit well with current research trends related to robotics and artificial intelligence. Biology-inspired cognitive architectures are extremely useful in building agents and robots, and this is one of the most important challenges of modern science. Therefore, the widely viewed and far-reaching goal of systems research and engineering is virtual agents and autonomous robots that mimic human behavior in...
-
Road traffic can be predicted by machine learning equally effectively as by complex microscopic model
PublikacjaSince high-quality real data acquired from selected road sections are not always available, a traffic control solution can use data from software traffic simulators working offline. The results show that in contrast to microscopic traffic simulation, the algorithms employing neural networks can work in real-time, so they can be used, among others, to determine the speed displayed on variable message road signs. This paper describes...
-
A Novel IoT-Perceptive Human Activity Recognition (HAR) Approach Using Multi-Head Convolutional Attention
PublikacjaTogether with fast advancement of the Internet of Things (IoT), smart healthcare applications and systems are equipped with increasingly more wearable sensors and mobile devices. These sensors are used not only to collect data, but also, and more importantly, to assist in daily activity tracking and analyzing of their users. Various human activity recognition (HAR) approaches are used to enhance such tracking. Most of the existing...
-
Widespread theta synchrony and high-frequency desynchronization underlies enhanced cognition
PublikacjaThe idea that synchronous neural activity underlies cognition has driven an extensive body of research in human and animal neuroscience. Yet, insufficient data on intracranial electrical connectivity has precluded a direct test of this hypothesis in a whole-brain setting. Through the lens of memory encoding and retrieval processes, we construct whole-brain connectivity maps of fast gamma (30-100 Hz) and slow theta (3-8 Hz) spectral...
-
Instance segmentation of stack composed of unknown objects
PublikacjaThe article reviews neural network architectures designed for the segmentation task. It focuses mainly on instance segmentation of stacked objects. The main assumption is that segmentation is based on a color image with an additional depth layer. The paper also introduces the Stacked Bricks Dataset based on three cameras: RealSense L515, ZED2, and a synthetic one. Selected architectures: DeepLab, Mask RCNN, DEtection TRansformer,...