Filtry
wszystkich: 113
wybranych: 104
-
Katalog
Filtry wybranego katalogu
Wyniki wyszukiwania dla: SEGMENTATION
-
Segmentation concept in mechanical engineering
PublikacjaZaprezentowano nowoczesne podejście do rozwiązywania problemów technicznych, technologicznych i organizacyjnych przedsiębiorstwa w oparciu ich strukturyzację. Przedstawiono przykłady segmentcji w stosunku do przedmiotów obrabianych oraz struktur organizacyjnych przedsiębiorstwa.
-
Segmentation of the electric scooter market in Poland
Publikacja -
Instance segmentation of stack composed of unknown objects
PublikacjaThe article reviews neural network architectures designed for the segmentation task. It focuses mainly on instance segmentation of stacked objects. The main assumption is that segmentation is based on a color image with an additional depth layer. The paper also introduces the Stacked Bricks Dataset based on three cameras: RealSense L515, ZED2, and a synthetic one. Selected architectures: DeepLab, Mask RCNN, DEtection TRansformer,...
-
Dependence of Power Characteristics on Savonius Rotor Segmentation
PublikacjaSavonius rotors are large and heavy because they use drag force for propulsion. This leads to a larger investment in comparison to horizontal axis wind turbine (HAWT) rotors using lift forces. A simple construction of the Savonius rotor is preferred to reduce the production effort. Therefore, it is proposed here to use single-segment rotors of high elongation. Nevertheless, this rotor type must be compared with a multi-segment...
-
Coffee Consumer Segmentation: Implications for Producers and Sellers
Publikacja -
Segmentation of Passenger Electric Cars Market in Poland
Publikacja -
Ensembling noisy segmentation masks of blurred sperm images
PublikacjaBackground: Sperm tail morphology and motility have been demonstrated to be important factors in determining sperm quality for in vitro fertilization. However, many existing computer-aided sperm analysis systems leave the sperm tail out of the analysis, as detecting a few tail pixels is challenging. Moreover, some publicly available datasets for classifying morphological defects contain images limited only to the sperm head. This...
-
Review of Segmentation Methods for Coastline Detection in SAR Images
PublikacjaSynthetic aperture radar (SAR) images acquired by airborne sensors or remote sensing satellites contain the necessary information that can be used to investigate various objects of interest on the surface of the Earth, including coastlines. The coastal zone is of great economic importance and is also very densely populated. The intensive and increasing use of coasts and changes of coastlines motivate researchers to try to assess...
-
Deep Instance Segmentation of Laboratory Animals in Thermal Images
PublikacjaIn this paper we focus on the role of deep instance segmentation of laboratory rodents in thermal images. Thermal imaging is very suitable to observe the behaviour of laboratory animals, especially in low light conditions. It is an non-intrusive method allowing to monitor the activity of animals and potentially observe some physiological changes expressed in dynamic thermal patterns. The analysis of the recorded sequence of thermal...
-
Image Segmentation of MRI image for Brain Tumor Detection
Publikacjathis research work presents a new technique for brain tumor detection by the combination of Watershed algorithm with Fuzzy K-means and Fuzzy C-means (KIFCM) clustering. The MATLAB based proposed simulation model is used to improve the computational simplicity, noise sensitivities, and accuracy rate of segmentation, detection and extraction from MR...
-
RFM-based repurchase behavior for customer classification and segmentation
Publikacja -
Computational Methods for Liver Vessel Segmentation in Medical Imaging: A Review
PublikacjaThe segmentation of liver blood vessels is of major importance as it is essential for formulating diagnoses, planning and delivering treatments, as well as evaluating the results of clinical procedures. Different imaging techniques are available for application in clinical practice, so the segmentation methods should take into account the characteristics of the imaging technique. Based on the literature, this review paper presents...
-
Urban scene semantic segmentation using the U-Net model
PublikacjaVision-based semantic segmentation of complex urban street scenes is a very important function during autonomous driving (AD), which will become an important technology in industrialized countries in the near future. Today, advanced driver assistance systems (ADAS) improve traffic safety thanks to the application of solutions that enable detecting objects, recognising road signs, segmenting the road, etc. The basis for these functionalities...
-
MEAN SHIFT BASED SEGMENTATION FOR BLEEDING REGIONS IN ENDOSCOPIC VIDEOS
PublikacjaWith a set of 38 manually marked bleeding regions form endoscopic videos, the authors attempted to find an optimal image segmentation method for reproducing doctor’s markup. Mean shift segmentation combined with HSV histogram segmentation were used as a segmentation method, which was then optimized by tuning the parameters of the method using global optimization algorithm. A target function for measuring the quality of segmentation was...
-
Accelerating Video Frames Classification With Metric Based Scene Segmentation
PublikacjaThis paper addresses the problem of the efficient classification of images in a video stream in cases, where all of the video has to be labeled. Realizing the similarity of consecutive frames, we introduce a set of simple metrics to measure that similarity. To use these observations for decreasing the number of necessary classifications, we propose a scene segmentation algorithm. Performed experiments have evaluated the acquired...
-
Semantic segmentation training using imperfect annotations and loss masking
PublikacjaOne of the most significant factors affecting supervised neural network training is the precision of the annotations. Also, in a case of expert group, the problem of inconsistent data annotations is an integral part of real-world supervised learning processes, well-known to researchers. One practical example is a weak ground truth delineation for medical image segmentation. In this paper, we have developed a new method of accurate...
-
Adaptive Hounsfield Scale Windowing in Computed Tomography Liver Segmentation
PublikacjaIn computed tomography (CT) imaging, the Hounsfield Unit (HU) scale quantifies radiodensity, but its nonlinear nature across organs and lesions complicates machine learning analysis. This paper introduces an automated method for adaptive HU scale windowing in deep learning-based CT liver segmentation. We propose a new neural network layer that optimizes HU scale window parameters during training. Experiments on the Liver Tumor...
-
Examining Quality of Hand Segmentation Based on Gaussian Mixture Models
PublikacjaResults of examination of various implementations of Gaussian mix-ture models are presented in the paper. Two of the implementations belonged to the Intel’s OpenCV 2.4.3 library and utilized Background Subtractor MOG and Background Subtractor MOG2 classes. The third implementation presented in the paper was created by the authors and extended Background Subtractor MOG2 with the possibility of operating on the scaled version of...
-
Scene Segmentation Basing on Color and Depth Images for Kinect Sensor
PublikacjaIn this paper we propose a method for segmenting single images from Kinect sensor by considering both color and depth information. The algorithm is based on a series of edge detection procedures designed for particular features of the scene objects. RGB and HSV color planes are separately analyzed in the first step with Canny edge detector, resulting in overall color edges mask. In depth images both clear boundaries and smooth...
-
Breast MRI segmentation by deep learning: key gaps and challenges
PublikacjaBreast MRI segmentation plays a vital role in early diagnosis and treatment planning of breast anomalies. Convolutional neural networks with deep learning have indicated promise in automating this process, but significant gaps and challenges remain to address. This PubMed-based review provides a comprehensive literature overview of the latest deep learning models used for breast segmentation. The article categorizes the literature...
-
Comparison of image pre-processing methods in liver segmentation task
PublikacjaAutomatic liver segmentation of Computed Tomography (CT) images is becoming increasingly important. Although there are many publications in this field there is little explanation why certain pre-processing methods were utilised. This paper presents a comparison of the commonly used approach of Hounsfield Units (HU) windowing, histogram equalisation, and a combination of these methods to try to ascertain what are the differences...
-
DentalSegmentator: robust deep learning-based CBCT image segmentation
Publikacja -
Segmentation of Coffee Consumers Using Sustainable Values: Cluster Analysis
Publikacja -
Active Contour Method for Segmentation of the Glands in Colon Histology Images
Publikacja -
DCANet: deep context attention network for automatic polyp segmentation
Publikacja -
Multi-objective design of miniaturized impedance transformers by domain segmentation
PublikacjaFast multi-objective design optimization of compact microstrip impedance transformers is discussed. Our approach exploits approximation models constructed using sampled coarse- mesh EM simulation data in a partitioned design space and response correction techniques for design refinement. Demonstra
-
Deep learning based thermal image segmentation for laboratory animals tracking
PublikacjaAutomated systems for behaviour classification of laboratory animals are an attractive alternative to manual scoring. However, the proper animals separation and tracking, especially when they are in close contact, is the bottleneck of the behaviour analysis systems. In this paper, we propose a method for the segmentation of thermal images of laboratory rats that are in close contact during social behaviour tests. For this, we are...
-
Three-objective antenna optimization by means of kriging surrogates and domain segmentation
PublikacjaIn this paper, an optimization framework for multi-objective design of antenna structures is discussed which exploits data-driven surrogates, a multi-objective evolutionary algorithm, response correction techniques for design refinement, as well as generalized domain segmentation. The last mechanism is introduced to constrain the design space region subjected to sampling, which permits reduction of the number of training data samples...
-
Deep Learning-Based Cellular Nuclei Segmentation Using Transformer Model
PublikacjaAccurate segmentation of cellular nuclei is imperative for various biological and medical applications, such as cancer diagnosis and drug discovery. Histopathology, a discipline employing microscopic examination of bodily tissues, serves as a cornerstone for cancer diagnosis. Nonetheless, the conventional histopathological diagnosis process is frequently marred by time constraints and potential inaccuracies. Consequently, there...
-
Learning sperm cells part segmentation with class-specific data augmentation
PublikacjaInfertility affects around 15% of couples worldwide. Male fertility problems include poor sperm quality and low sperm count. The advanced fertility treatment methods like ICSI are nowadays supported by vision systems to assist embryologists in selecting good quality sperm. Computer-Assisted Semen Analysis (CASA) provides quantitative and qualitative sperm analysis concerning concentration, motility, morphology, vitality, and fragmentation....
-
Closer Look at the Uncertainty Estimation in Semantic Segmentation under Distributional Shift
PublikacjaWhile recent computer vision algorithms achieve impressive performance on many benchmarks, they lack robustness - presented with an image from a different distribution, (e.g. weather or lighting conditions not considered during training), they may produce an erroneous prediction. Therefore, it is desired that such a model will be able to reliably predict its confidence measure. In this work, uncertainty estimation for the task...
-
Creating a radiological database for automatic liver segmentation using artificial intelligence.
PublikacjaImaging in medicine is an irreplaceable stage in the diagnosis and treatment of cancer. The subsequent therapeutic effect depends on the quality of the imaging tests performed. In recent years we have been observing the evolution of 2D to 3D imaging for many medical fields, including oncological surgery. The aim of the study is to present a method of selection of radiological imaging tests for learning neural networks.
-
Application of colour image segmentation for localization and extraction text from images
PublikacjaW otaczającym nas świecie informacja tekstowa odgrywa wielką rolę. W postaci tekstowej podawane są: nazwy ulic, nazwy sklepów i instytucji, opisy przedmiotów np. tytuły książek, opakowań itp. Jednocześnie współczesne programy komputerowe służące do rozpoznawania tekstu (OCR) ''nie radzą sobie'' z analizą obrazów otrzymanaych za pomocą kamer. Segmentacja obrazu z następującą kontekstową analizą parametrów segmentów może dostarczyć...
-
Segmentation-Based BI-RADS ensemble classification of breast tumours in ultrasound images
PublikacjaBackground: The development of computer-aided diagnosis systems in breast cancer imaging is exponential. Since 2016, 81 papers have described the automated segmentation of breast lesions in ultrasound images using arti- ficial intelligence. However, only two papers have dealt with complex BI-RADS classifications. Purpose: This study addresses the automatic classification of breast lesions into binary classes (benign vs. ma- lignant)...
-
Comparison of Selected Neural Network Models Used for Automatic Liver Tumor Segmentation
PublikacjaAutomatic and accurate segmentation of liver tumors is crucial for the diagnosis and treatment of hepatocellular carcinoma or metastases. However, the task remains challenging due to imprecise boundaries and significant variations in the shape, size, and location of tumors. The present study focuses on tumor segmentation as a more critical aspect from a medical perspective, compared to liver parenchyma segmentation, which is the...
-
Accelerated multi-objective design optimization of antennas by surrogate modeling and domain segmentation
PublikacjaMulti-objective optimization yields indispensable information about the best possible design trade-offs of an antenna structure, yet it is challenging if full-wave electromagnetic (EM) analysis is utilized for performance evaluation. The latter is a necessity for majority of contemporary antennas as it is the only way of achieving acceptable modeling accuracy. In this paper, a procedure for accelerated multi-objective design of...
-
KEMR-Net: A Knowledge-Enhanced Mask Refinement Network for Chromosome Instance Segmentation
PublikacjaThis article proposes a mask refinement method for chromosome instance segmentation. The proposed method exploits the knowledge representation capability of Neural Knowledge DNA (NK-DNA) to capture the semantics of the chromosome’s shape, texture, and key points, and then it uses the captured knowledge to improve the accuracy and smoothness of the masks. We validate the method’s effectiveness on our latest high-resolution chromosome...
-
Comparison of Deep Neural Network Learning Algorithms for Mars Terrain Image Segmentation
PublikacjaThis paper is dedicated to the topic of terrain recognition on Mars using advanced techniques based on the convolutional neural networks (CNN). The work on the project was conducted based on the set of 18K images collected by the Curiosity, Opportunity and Spirit rovers. The data were later processed by the model operating in a Python environment, utilizing Keras and Tensorflow repositories. The model benefits from the pretrained...
-
Leveraging spatio-temporal features for joint deblurring and segmentation of instruments in dental video microscopy
PublikacjaIn dentistry, microscopes have become indispensable optical devices for high-quality treatment and micro-invasive surgery, especially in the field of endodontics. Recent machine vision advances enable more advanced, real-time applications including but not limited to dental video deblurring and workflow analysis through relevant metadata obtained by instrument motion trajectories. To this end, the proposed work addresses dental...
-
Sperm segmentation and abnormalities detection during the ICSI procedure using machine learning algorithms
Publikacja(1) About 15-20% of couples struggle with the problem of infertility. 30 to 40% of these cases are caused by abnormalities in the structure and motility of sperm. Sometimes the only possibility for such people is to use the procedure of artificial insemination. CASA systems are used to increase the efficiency of this procedure by selecting the appropriate sperm cell. (2) This paper presents an approach to the sperm classification...
-
Domain segmentation for low-cost surrogate-assisted multi-objective design optimisation of antennas
PublikacjaAbstract: Information regarding the best possible design trade-offs of an antenna structure can be obtained through multiobjective optimisation (MO). Unfortunately, MO is extremely challenging if full-wave electromagnetic (EM) simulation models are used for performance evaluation. Yet, for the majority of contemporary antennas, EM analysis is the only tool that ensures reliability. This study introduces a procedure for accelerated...
-
Segmentation Quality Refinement in Large-Scale Medical Image Dataset with Crowd-Sourced Annotations
PublikacjaDeployment of different techniques of deep learning including Convolutional Neural Networks (CNN) in image classification systems has accomplished outstanding results. However, the advantages and potential impact of such a system can be completely negated if it does not reach a target accuracy. To achieve high classification accuracy with low variance in medical image classification system, there is needed the large size of the...
-
DentalSegmentator: Robust open source deep learning-based CT and CBCT image segmentation
Publikacja -
Segmentation of Coffee Consumers Using Sustainable Values: Cluster Analysis on the Polish Coffee Market
Publikacja -
Segmentation of Coffee Consumers Using Sustainable Values: Cluster Analysis on the Polish Coffee Market
Publikacja -
C2 NIWA Community-Segmentation Criteria and Building Brand Associations on the Example of a Selected Target Group
PublikacjaEvery organization which offers products or services wishes to communicate with their customers in the most effective way. This kind of communication is based on proper selection of target groups, which are extracted in the process of market segmentation. That is way it is very important to ask the question to whom the message is to be directed and what kind of message we want to give. This article describes the selection criteria...
-
Application Of Generative Adversarial Network for Data Augmentation and Multiplication to Automated Cell Segmentation of the Corneal Endothelium
PublikacjaConsidering the automatic segmentation of the endothelial layer, the available data of the corneal endothelium is still limited to a few datasets, typically containing an average of only about 30 images. To fill this gap, this paper introduces the use of Generative Adversarial Networks (GANs) to augment and multiply data. By using the ``Alizarine'' dataset, we train a model to generate a new synthetic dataset with over 513k images....
-
High-Speed Binary-to-Residue Converter Design Using 2-Bit Segmentation of the Input Word
PublikacjaIn this paper a new approach to the design of the high-speed binary-to-residue converter is proposed that allows the attaining of high pipelining rates by eliminating memories used in modulo m generators. The converter algorithm uses segmentation of the input binary word into 2-bit segments. The use and effects of the input word segmentation for the synthesis of converters for five-bit moduli are presented. For the number represented...
-
Segmentation of academic community for the purposes of mobility plan development – case study of Gdansk University of Technology
PublikacjaThe objective of the paper is to analyse the structure of academic community for its transport behaviour and attitudes using the example of the Gdansk University of Technology (the GUT) in Poland. Once understood, the group can be divided into homogenous sub-groups and studied for their potential and ways to influence their behaviour, attitudes and transport patterns. The results may be used to develop dedicated actions designed...
-
Detection and segmentation of moving vehicles and trains using Gaussian mixtures, shadow detection and morphological processing
PublikacjaSolution presented in this paper combines background modelling, shadow detection and morphological and temporal processing into one system responsible for detection and segmentation of moving objects recorded with a static camera. Vehicles and trains are detected based on their pixellevel difference from the continually updated background model utilizing a Gaussian mixture calculated separately for every pixel. The shadow detection...