Filtry
wszystkich: 56
Wyniki wyszukiwania dla: feature selection
-
An Approach to RBF Initialization with Feature Selection
Publikacja -
Cluster-Dependent Feature Selection for the RBF Networks
Publikacja -
Auditory-model based robust feature selection for speech recognition
Publikacja -
OmicSelector: automatic feature selection and deep learning modeling for omic experiments
Publikacja -
Agent-Based RBF Network Classifier with Feature Selection in a Kernel Space
Publikacja -
Cluster-dependent rotation-based feature selection for the RBF networks initialization
Publikacja -
Data Sampling-Based Feature Selection Framework for Software Defect Prediction
Publikacja -
Prediction based on integration of Decisional DNA and a feature selection algorithm Relief-F
PublikacjaThe paper presents prediction model based on Decisional DNA and Set of experienced integrated with Relief_F algorithm for feature selection
-
Multidimensional Feature Selection and Interaction Mining with Decision Tree Based Ensemble Methods
Publikacja -
Tree-based homogeneous ensemble model with feature selection for diabetic retinopathy prediction
Publikacja -
Impact of Feature Selection Methods on the Predictive Performance of Software Defect Prediction Models: An Extensive Empirical Study
Publikacja -
A Novel Divisive iK-Means Algorithm with Region-Driven Feature Selection as a Tool for Automated Detection of Tumour Heterogeneity in MALDI IMS Experiments
Publikacja -
Comparative study on total nitrogen prediction in wastewater treatment 1 plant and effect of various feature selection methods on machine learning algorithms performance
PublikacjaWastewater characteristics prediction in wastewater treatment plants (WWTPs) is valuable and can reduce the number of sampling, energy, and cost. Feature Selection (FS) methods are used in the pre-processing section for enhancing the model performance. This study aims to evaluate the effect of seven different FS methods (filter, wrapper, and embedded methods) on enhancing the prediction accuracy for total nitrogen (TN) in the WWTP...
-
Feature type and size selection for adaboost face detection algorithm
PublikacjaThe article presents different sets of Haar-like features defined for adaptive boosting (AdaBoost) algorithm for face detection. Apart from a simple set of pixel intensity differences between horizontally or vertically neighboring rectangles, the features based on rotated rectangles are considered. Additional parameter that limits the area on which the features are calculated is also introduced. The experiments carried out on...
-
Selection of Relevant Features for Text Classification with K-NN
PublikacjaIn this paper, we describe five features selection techniques used for a text classification. An information gain, independent significance feature test, chi-squared test, odds ratio test, and frequency filtering have been compared according to the text benchmarks based on Wikipedia. For each method we present the results of classification quality obtained on the test datasets using K-NN based approach. A main advantage of evaluated...
-
Selection of Features for Multimodal Vocalic Segments Classification
PublikacjaEnglish speech recognition experiments are presented employing both: audio signal and Facial Motion Capture (FMC) recordings. The principal aim of the study was to evaluate the influence of feature vector dimension reduction for the accuracy of vocalic segments classification employing neural networks. Several parameter reduction strategies were adopted, namely: Extremely Randomized Trees, Principal Component Analysis and Recursive...
-
Local Texture Pattern Selection for Efficient Face Recognition and Tracking
PublikacjaThis paper describes the research aimed at finding the optimal configuration of the face recognition algorithm based on local texture descriptors (binary and ternary patterns). Since the identification module was supposed to be a part of the face tracking system developed for interactive wearable computer, proper feature selection, allowing for real-time operation, became particularly important. Our experiments showed that it is...
-
Spiral Search Grasshopper Features Selection with VGG19-ResNet50 for Remote Sensing Object Detection
PublikacjaRemote sensing object detection plays a major role in satellite imaging and is required in various scenarios such as transportation, forestry, and the ocean. Deep learning techniques provide efficient performance in remote sensing object detection. The existing techniques have the limitations of data imbalance, overfitting, and lower efficiency in detecting small objects. This research proposes the spiral search grasshopper (SSG)...
-
Feature Reduction Using Similarity Measure in Object Detector Learning with Haar-like Features
PublikacjaThis paper presents two methods of training complexity reduction by additional selection of features to check in object detector training task by AdaBoost training algorithm. In the first method, the features with weak performance at first weak classifier building process are reduced based on a list of features sorted by minimum weighted error. In the second method the feature similarity measures are used to throw away that features...
-
Selecting Features with SVM
PublikacjaA common problem with feature selection is to establish how many features should be retained at least so that important information is not lost. We describe a method for choosing this number that makes use of Support Vector Machines. The method is based on controlling an angle by which the decision hyperplane is tilt due to feature selection. Experiments were performed on three text datasets generated from a Wikipedia dump. Amount...
-
Machining process sequencing and machine assignment in generative feature-based CAPP for mill-turn parts
PublikacjaProcess selection and sequencing, as one of the most complex issues when evaluated from a mathematical point of view and crucial in CAPP, still attract research attention. For the current trend of intelligent manufacturing, machining features (MFs) are the information carriers for workpiece geometry and topology representation. They are basically derived from CAD models and are used by downstream engineering applications. A feature-based...
-
From Data to Decision: Interpretable Machine Learning for Predicting Flood Susceptibility in Gdańsk, Poland
PublikacjaFlood susceptibility prediction is complex due to the multifaceted interactions among hydrological, meteorological, and urbanisation factors, further exacerbated by climate change. This study addresses these complexities by investigating flood susceptibility in rapidly urbanising regions prone to extreme weather events, focusing on Gdańsk, Poland. Three popular ML techniques, Support Vector Machine (SVM), Random Forest (RF), and...
-
COMPOSITE MATERIAL SELECTION FOR A PATIENT TRANSFER ASSIST DEVICE
PublikacjaLaminates - layered composites containing at least two elements (matrix and reinforcement) widely used in industry have also found their usage in medicine. Their main feature is the ability to modify the material in order to obtain the required properties. Depending on the needs, we can modify reinforcement, type of resin or the method of bonding substrates. Commonly used fibers are: carbon fiber, glass and aramid fibers; resins...
-
Evaluating the risk of endometriosis based on patients’ self-assessment questionnaires
PublikacjaBackground Endometriosis is a condition that significantly affects the quality of life of about 10 % of reproductive-aged women. It is characterized by the presence of tissue similar to the uterine lining (endometrium) outside the uterus, which can lead lead scarring, adhesions, pain, and fertility issues. While numerous factors associated with endometriosis are documented, a wide range of symptoms may still be undiscovered. Methods In...
-
Balanced Spider Monkey Optimization with Bi-LSTM for Sustainable Air Quality Prediction
PublikacjaA reliable air quality prediction model is required for pollution control, human health monitoring, and sustainability. The existing air quality prediction models lack efficiency due to overfitting in prediction model and local optima trap in feature selection. This study proposes the Balanced Spider Monkey Optimization (BSMO) technique for effective feature selection to overcome the local optima trap and overfitting problems....
-
Ranking Speech Features for Their Usage in Singing Emotion Classification
PublikacjaThis paper aims to retrieve speech descriptors that may be useful for the classification of emotions in singing. For this purpose, Mel Frequency Cepstral Coefficients (MFCC) and selected Low-Level MPEG 7 descriptors were calculated based on the RAVDESS dataset. The database contains recordings of emotional speech and singing of professional actors presenting six different emotions. Employing the algorithm of Feature Selection based...
-
Systematic Literature Review for Emotion Recognition from EEG Signals
PublikacjaResearchers have recently become increasingly interested in recognizing emotions from electroencephalogram (EEG) signals and many studies utilizing different approaches have been conducted in this field. For the purposes of this work, we performed a systematic literature review including over 40 articles in order to identify the best set of methods for the emotion recognition problem. Our work collects information about the most...
-
Systematic Literature Review for Emotion Recognition from EEG Signals
PublikacjaResearchers have recently become increasingly interested in recognizing emotions from electroencephalogram (EEG) signals and many studies utilizing different approaches have been conducted in this field. For the purposes of this work, we performed a systematic literature review including over 40 articles in order to identify the best set of methods for the emotion recognition problem. Our work collects information about the most...
-
A Microwave Sensor with Operating Band Selection to Detect Rotation and Proximity in the Rapid Prototyping Industry
PublikacjaThis paper presents a novel sensor for detecting and measuring angular rotation and proximity, intended for rapid prototyping machines. The sensor is based on a complementary split-ring resonator (CSRR) driven by a conductor-backed coplanar waveguide. The sensor has a planar topology, which makes it simple and cost-effective to produce and accurate in measuring both physical quantities. The sensor has two components, a rotor, and...
-
Multiplicative Long Short-Term Memory with Improved Mayfly Optimization for LULC Classification
PublikacjaLand Use and Land Cover (LULC) monitoring is crucial for global transformation, sustainable land control, urban planning, urban growth prediction, and the establishment of climate regulations for long-term development. Remote sensing images have become increasingly important in many environmental planning and land use surveys in recent times. LULC is evaluated in this research using the Sat 4, Sat 6, and Eurosat datasets. Various...
-
A comparative study of English viseme recognition methods and algorithm
PublikacjaAn elementary visual unit – the viseme is concerned in the paper in the context of preparing the feature vector as a main visual input component of Audio-Visual Speech Recognition systems. The aim of the presented research is a review of various approaches to the problem, the implementation of algorithms proposed in the literature and a comparative research on their effectiveness. In the course of the study an optimal feature vector...
-
A comparative study of English viseme recognition methods and algorithms
PublikacjaAn elementary visual unit – the viseme is concerned in the paper in the context of preparing the feature vector as a main visual input component of Audio-Visual Speech Recognition systems. The aim of the presented research is a review of various approaches to the problem, the implementation of algorithms proposed in the literature and a comparative research on their effectiveness. In the course of the study an optimal feature vector construction...
-
Use of Modified Cuckoo Search algorithm in the design process of integrated power systems for modern and energy self-sufficient farms
PublikacjaIn the face of increasingly stringent pollutant emission regulations, designing an agricultural holding becomes a difficult challenge of connecting a large number of coefficients that describe an energy system of a farm in regard to its ecological and economic efficiency. One way to cope with this issue is to design an energy self-sufficient farm that integrates various technologies, including renewable energy. However, the selection...
-
A Novel IoT-Perceptive Human Activity Recognition (HAR) Approach Using Multi-Head Convolutional Attention
PublikacjaTogether with fast advancement of the Internet of Things (IoT), smart healthcare applications and systems are equipped with increasingly more wearable sensors and mobile devices. These sensors are used not only to collect data, but also, and more importantly, to assist in daily activity tracking and analyzing of their users. Various human activity recognition (HAR) approaches are used to enhance such tracking. Most of the existing...
-
Hazard Control in Industrial Environments: A Knowledge-Vision-Based Approach
PublikacjaThis paper proposes the integration of image processing techniques (such as image segmentation, feature extraction and selection) and a knowledge representation approach in a framework for the development of an automatic system able to identify, in real time, unsafe activities in industrial environments. In this framework, the visual information (feature extraction) acquired from video-camera images and other context based gathered...
-
OOA-modified Bi-LSTM network: An effective intrusion detection framework for IoT systems
PublikacjaCurrently, the Internet of Things (IoT) generates a huge amount of traffic data in communication and information technology. The diversification and integration of IoT applications and terminals make IoT vulnerable to intrusion attacks. Therefore, it is necessary to develop an efficient Intrusion Detection System (IDS) that guarantees the reliability, integrity, and security of IoT systems. The detection of intrusion is considered...
-
Identification of volatile compounds based on the electrocatalytic gas sensor responses
PublikacjaMeasured response in case of electrocatalytic gas sensors is in form of a voltamperometric characteristic. Current-voltage (I-V) response shape depends on the gas type and its concentration. Such response contains significantly more information comparing with typical electrochemical sensors, but is quite difficult to analyze. When I-V curve contains current peaks, position of such peaks can be used...
-
Physics augmented classification of fNIRS signals
PublikacjaBackground. Predictive classification favours performance over semantics. In traditional predictive classification pipelines, feature engineering is often oblivious to the underlying phenomena. Hypothesis. In applied domains such as functional Near Infrared Spectroscopy (fNIRS), the exploitation of physical knowledge may improve the discriminative quality of our observation set. Aims. Give exemplary evidence that intervening the...
-
Satellite Image Classification Using a Hierarchical Ensemble Learning and Correlation Coefficient-Based Gravitational Search Algorithm
PublikacjaSatellite image classification is widely used in various real-time applications, such as the military, geospatial surveys, surveillance and environmental monitoring. Therefore, the effective classification of satellite images is required to improve classification accuracy. In this paper, the combination of Hierarchical Framework and Ensemble Learning (HFEL) and optimal feature selection is proposed for the precise identification...
-
Application of gas chromatographic data and 2D molecular descriptors for accurate global mobility potential prediction
PublikacjaMobility is a key feature affecting the environmental fate, which is of particular importance in the case of persistent organic pollutants (POPs) and emerging pollutants (EPs). In this study, the global mobility classification artificial neural networks-based models employing GC retention times (RT) and 2D molecular descriptors were constructed and validated. The high usability of RT was confirmed based on the feature selection...
-
An automated learning model for twitter sentiment analysis using Ranger AdaBelief optimizer based Bidirectional Long Short Term Memory
PublikacjaSentiment analysis is an automated approach which is utilized in process of analysing textual data to describe public opinion. The sentiment analysis has major role in creating impact in the day-to-day life of individuals. However, a precise interpretation of text still relies as a major concern in classifying sentiment. So, this research introduced Bidirectional Long Short Term Memory with Ranger AdaBelief Optimizer (Bi-LSTM RAO)...
-
Intracranial hemorrhage detection in 3D computed tomography images using a bi-directional long short-term memory network-based modified genetic algorithm
PublikacjaIntroduction: Intracranial hemorrhage detection in 3D Computed Tomography (CT) brain images has gained more attention in the research community. The major issue to deal with the 3D CT brain images is scarce and hard to obtain the labelled data with better recognition results. Methods: To overcome the aforementioned problem, a new model has been implemented in this research manuscript. After acquiring the images from the Radiological...
-
Analysis of Organic Rankine Cycle efficiency and vapor generator heat transfer surface in function of the reduced pressure
PublikacjaIn the paper presented is analysis of the influence of reduced pressure on efficiency and heat transfer area of vapor generator of Organic Rankine Cycle (ORC) in case of subcritical and supercritical parameters of operation. Compared are two cases of subcritical and supercritical ORC featuring a similar arrangement of heat source supply and heat removal, that is featuring the same temperatures of working fluid before the turbine,...
-
Numbers, Please: Power- and Voltage-Related Indices in Control of a Turbine-Generator Set
PublikacjaThis paper discusses the proper selection and interpretation of aggregated control performance indices values mirroring the quality of electrical energy generation by a turbine-generator set cooperating with a power system. Typically, a set of basic/classical and individual indices is used in energy engineering to ensure the mirroring feature and is related to voltage, frequency and active or reactive power deviations from their...
-
Machine learning for the management of biochar yield and properties of biomass sources for sustainable energy
PublikacjaBiochar is emerging as a potential solution for biomass conversion to meet the ever increasing demand for sustainable energy. Efficient management systems are needed in order to exploit fully the potential of biochar. Modern machine learning (ML) techniques, and in particular ensemble approaches and explainable AI methods, are valuable for forecasting the properties and efficiency of biochar properly. Machine-learning-based forecasts,...
-
Machine learning-based prediction of residual drift and seismic risk assessment of steel moment-resisting frames considering soil-structure interaction
PublikacjaNowadays, due to improvements in seismic codes and computational devices, retrofitting buildings is an important topic, in which, permanent deformation of buildings, known as Residual Interstory Drift Ratio (RIDR), plays a crucial role. To provide an accurate yet reliable prediction model, 32 improved Machine Learning (ML) algorithms were considered using the Python software to investigate the best method for estimating Maximum...
-
Prediction of energy consumption and evaluation of affecting factors in a full-scale WWTP using a machine learning approach
PublikacjaTreatment of municipal wastewater to meet the stringent effluent quality standards is an energy-intensive process and the main contributor to the costs of wastewater treatment plants (WWTPs). Analysis and prediction of energy consumption (EC) are essential in designing and operating sustainable energy-saving WWTPs. In this study, the effect of wastewater, hydraulic, and climate-based parameters on the daily consumption of EC by...
-
Gender approaches to evolutionary multi-objective optimization using pre-selection of criteria
PublikacjaA novel idea to perform evolutionary computations (ECs) for solving highly dimensional multi-objective optimization (MOO) problems is proposed. Following the general idea of evolution, it is proposed that information about gender is used to distinguish between various groups of objectives and identify the (aggregate) nature of optimality of individuals (solutions). This identification is drawn out of the fitness of individuals...
-
Application of a hybrid mechanistic/machine learning model for prediction of nitrous oxide (N2O) production in a nitrifying sequencing batch reactor
PublikacjaNitrous oxide (N2O) is a key parameter for evaluating the greenhouse gas emissions from wastewater treatment plants. In this study, a new method for predicting liquid N2O production during nitrification was developed based on a mechanistic model and machine learning (ML) algorithm. The mechanistic model was first used for simulation of two 15-day experimental trials in a nitrifying sequencing batch reactor. Then, model predictions...
-
Fast Machine-Learning-Enabled Size Reduction of Microwave Components Using Response Features
PublikacjaAchieving compact size has emerged as a key consideration in modern microwave design. While structural miniaturization can be accomplished through judicious circuit architecture selection, precise parameter tuning is equally vital to minimize physical dimensions while meeting stringent performance requirements for electrical characteristics. Due to the intricate nature of compact structures, global optimization is recommended,...