Filtry
wszystkich: 590
Wyniki wyszukiwania dla: BACKSTEPPING, NEURAL NETWORKS, RBF, DYNAMIC SHIP POSITIONING
-
Simulation model for evaluation of QOS dynamic routing
PublikacjaCurrent informational networks use a large variety of technologies to support data exchange. Most of them are focused on IP protocol and include mechanisms which by definition should supply demanded QoS. One of those mechanisms is efficient path calculation - routing. Traffic offered to the network can change very rapidly in short term. Routing should support such traffic changes and all the time calculate valid paths in terms...
-
Fading Modelling in Dynamic Off-Body Channels
PublikacjaThis paper presents an off-body fading channel model for Body Area Networks (BANs) in indoor environments. The proposed model, which is based on both simulations and measurements in a realistic environment, consists of three components: mean path loss, body shadowing, and multipath fading. Seven scenarios in an indoor environment (a medium-size room with furniture, mostly consisting of wooden tables and chairs) have been measured:...
-
Solvent Screening for Solubility Enhancement of Theophylline in Neat, Binary and Ternary NADES Solvents: New Measurements and Ensemble Machine Learning
PublikacjaTheophylline, a typical representative of active pharmaceutical ingredients, was selected to study the characteristics of experimental and theoretical solubility measured at 25 °C in a broad range of solvents, including neat, binary mixtures and ternary natural deep eutectics (NADES) prepared with choline chloride, polyols and water. There was a strong synergistic effect of organic solvents mixed with water, and among the experimentally...
-
Intermolecular Interactions as a Measure of Dapsone Solubility in Neat Solvents and Binary Solvent Mixtures
PublikacjaDapsone is an effective antibacterial drug used to treat a variety of conditions. However, the aqueous solubility of this drug is limited, as is its permeability. This study expands the available solubility data pool for dapsone by measuring its solubility in several pure organic solvents: N-methyl-2-pyrrolidone (CAS: 872-50-4), dimethyl sulfoxide (CAS: 67-68-5), 4-formylmorpholine (CAS: 4394-85-8), tetraethylene pentamine (CAS:...
-
Improved Modeling of Microwave Structures Using Performance-Driven Fully-Connected Regression Surrogate
PublikacjaFast replacement models (or surrogates) have been widely applied in the recent years to accelerate simulation-driven design procedures in microwave engineering. The fundamental reason is a considerable—and often prohibitive—CPU cost of massive full-wave electromagnetic (EM) analyses related to solving common tasks such as parametric optimization or uncertainty quantification. The most popular class of surrogates are data-driven...
-
Segmentation Quality Refinement in Large-Scale Medical Image Dataset with Crowd-Sourced Annotations
PublikacjaDeployment of different techniques of deep learning including Convolutional Neural Networks (CNN) in image classification systems has accomplished outstanding results. However, the advantages and potential impact of such a system can be completely negated if it does not reach a target accuracy. To achieve high classification accuracy with low variance in medical image classification system, there is needed the large size of the...
-
Employing Subjective Tests and Deep Learning for Discovering the Relationship between Personality Types and Preferred Music Genres
PublikacjaThe purpose of this research is two-fold: (a) to explore the relationship between the listeners’ personality trait, i.e., extraverts and introverts and their preferred music genres, and (b) to predict the personality trait of potential listeners on the basis of a musical excerpt by employing several classification algorithms. We assume that this may help match songs according to the listener’s personality in social music networks....
-
Robust and Efficient Machine Learning Algorithms for Visual Recognition
PublikacjaIn visual recognition, the task is to identify and localize all objects of interest in the input image. With the ubiquitous presence of visual data in modern days, the role of object recognition algorithms is becoming more significant than ever and ranges from autonomous driving to computer-aided diagnosis in medicine. Current models for visual recognition are dominated by models based on Convolutional Neural Networks (CNNs), which...
-
Development of an AI-based audiogram classification method for patient referral
PublikacjaHearing loss is one of the most significant sensory disabilities. It can have various negative effects on a person's quality of life, ranging from impeded school and academic performance to total social isolation in severe cases. It is therefore vital that early symptoms of hearing loss are diagnosed quickly and accurately. Audiology tests are commonly performed with the use of tonal audiometry, which measures a patient's hearing...
-
Numerical Modelling for Prediction of Compression Index from Soil Index Properties in Jimma town, Ethiopia
PublikacjaIn this study, correlations are developed to predict compression index (Cc) from index parameters so that one can be able to model Jimma soils with compression index using simple laboratory tests. Undisturbed and disturbed soil samples from twelve different locations in Jimma town were collected. Laboratory tests like specific gravity, grain size analysis, Atterberg limit, and one-dimensional consolidation test for a total of twenty-four...
-
Design Methodology for Small Passenger Ships On the Example of the Ferryboat Motława 2 Driven by Hybrid Propulsion System
PublikacjaDynamic development in practically all elds of science and engineering has not passed over shipbuilding . In last years , engineers got to their use computer soware which makes it possible to perform strength and hydrodynamic calculations as well as to visualize design projects in 3 D space [1-4]. At their disposal they have full spectrum of modern solutions associated with the use of advanced materials and technologies [5-7]....
-
Evaluation of a company’s image on social media using the Net Sentiment Rate
PublikacjaVast amounts of new types of data are constantly being created as a result of dynamic digitization in all areas of our lives. One of the most important and valuable categories for business is data from social networks such as Facebook. Feedback resulting from the sharing of thoughts and emotions, expressed in comments on various products and services, is becoming the key factor on which modern business is based. This feedback is...
-
Survey on fuzzy logic methods in control systems of electromechanical plants
PublikacjaРассмотрены алгоритмы управления электромеханическими системами с использованием теории нечеткой логики, приводятся основные положения их синтеза, рассматриваются методы анализа их устойчивости на основе нечетких функций Ляпунова. Эти алгоритмы чаще всего реализуются в виде различных регуляторов, применение которых целесообразно в системах, математическая модель которых не известна, не детерминирована или является строго нелинейной,...
-
Energy Management for PV Powered Hybrid Storage System in Electric Vehicles Using Artificial Neural Network and Aquila Optimizer Algorithm
PublikacjaIn an electric vehicle (EV), using more than one energy source often provides a safe ride without concerns about range. EVs are powered by photovoltaic (PV), battery, and ultracapacitor (UC) systems. The overall results of this arrangement are an increase in travel distance; a reduction in battery size; improved reaction, especially under overload; and an extension of battery life. Improved results allow the energy to be used efficiently,...
-
Combined Single Neuron Unit Activity and Local Field Potential Oscillations in a Human Visual Recognition Memory Task
PublikacjaGOAL: Activities of neuronal networks range from action potential firing of individual neurons, coordinated oscillations of local neuronal assemblies, and distributed neural populations. Here, we describe recordings using hybrid electrodes, containing both micro- and clinical macroelectrodes, to simultaneously sample both large-scale network oscillations and single neuron spiking activity in the medial temporal lobe structures...
-
Faults and Fault Detection Methods in Electric Drives
PublikacjaThe chapter presents a review of faults and fault detection methods in electric drives. Typical faults are presented that arises for the induction motor, which is valued in the industry for its robust construction and cost-effective production. Moreover, a summary is presented of detectable faults in conjunction with the required physical information that allow a detection of specific faults. In order to address faults of a complete...
-
Experimental and Theoretical Screening for Green Solvents Improving Sulfamethizole Solubility
PublikacjaSolubility enhancement of poorly soluble active pharmaceutical ingredients is of crucial importance for drug development and processing. Extensive experimental screening is limited due to the vast number of potential solvent combinations. Hence, theoretical models can offer valuable hints for guiding experiments aimed at providing solubility data. In this paper, we explore the possibility of applying quantum-chemistry-derived...
-
System for automatic singing voice recognition
PublikacjaW artykule przedstawiono system automatycznego rozpoznawania jakości i typu głosu śpiewaczego. Przedstawiono bazę danych oraz zaimplementowane parametry. Algorytmem decyzyjnym jest algorytm sztucznych sieci neuronowych. Wytrenowany system decyzyjny osiąga skuteczność ok. 90% w obydwu kategoriach rozpoznawania. Dodatkowo wykazano przy pomocy metod statystycznych, że wyniki działania systemu automatycznej oceny jakości technicznej...
-
Accurate Modeling of Frequency Selective Surfaces Using Fully-Connected Regression Model with Automated Architecture Determination and Parameter Selection Based on Bayesian Optimization
PublikacjaSurrogate modeling has become an important tool in the design of high-frequency structures. Although full-wave electromagnetic (EM) simulation tools provide an accurate account for the circuit characteristics and performance, they entail considerable computational expenditures. Replacing EM analysis by fast surrogates provides a way to accelerate the design procedures. Unfortunately, modeling of microwave passives is a challenging...
-
On Memory-Based Precise Calibration of Cost-Efficient NO2 Sensor Using Artificial Intelligence and Global Response Correction
PublikacjaNitrogen dioxide (NO2) is a prevalent air pollutant, particularly abundant in densely populated urban regions. Given its harmful impact on health and the environment, precise real-time monitoring of NO2 concentration is crucial, particularly for devising and executing risk mitigation strategies. However, achieving precise measurements of NO2 is challenging due to the need for expensive and cumbersome equipment. This has spurred...
-
Looking for the Optimal Location of an Eco-District within a Metropolitan Area: The Case of Tricity Metropolitan Area
PublikacjaCompact housing structures located in city centers are considered to be the most energy and environmentally eective, mainly due to the access to services, transport networks and municipal infrastructures. There is the question of why so many of the acknowledged ecological housing complexes are located on the outskirts of cities or suburbs. Numerous cities decide to introduce strategies either to densify city centers, hoping to...
-
Dynamic Route Discovery Using Modified Grasshopper Optimization Algorithm in Wireless Ad-Hoc Visible Light Communication Network
PublikacjaIn recent times, visible light communication is an emerging technology that supports high speed data communication for wireless communication systems. However, the performance of the visible light communication system is impaired by inter symbol interference, the time dispersive nature of the channel, and nonlinear features of the light emitting diode that significantly reduces the bit error rate performance. To address these problems,...
-
A Comparative Study of Fuzzy SMC with Adaptive Fuzzy PID for Sensorless Speed Control of Six-Phase Induction Motor
PublikacjaMulti-phase motors have recently replaced three-phase induction motors in a variety of applications due to the numerous benefits they provide, and the absence of speed sensors promotes induction motors with variable speed drives. Sensorless speed control minimizes unnecessary speed encoder cost, reduces maintenance, and improves the motor drive’s reliability. The performance comparison of the fuzzy sliding mode controller (FSMC)...
-
A Comparative Study of Fuzzy SMC with Adaptive Fuzzy PID for Sensorless Speed Control of Six-Phase Induction Motor
PublikacjaMulti-phase motors have recently replaced three-phase induction motors in a variety of applications due to the numerous benefits they provide, and the absence of speed sensors promotes induction motors with variable speed drives. Sensorless speed control minimizes unnecessary speed encoder cost, reduces maintenance, and improves the motor drive’s reliability. The performance comparison of the fuzzy sliding mode controller (FSMC)...
-
TDOA versus ATDOA for wide area multilateration system
PublikacjaThis paper outlines a new method of a location service (LCS) in the asynchronous wireless networks (AWNs) where the nodes (base stations) operate asynchronously in relation to one another. This method, called asynchronous time difference of arrival (ATDOA), enables the calculation of the position of the mobile object (MO) through the measurements taken by a set of non-synchronized fixed nodes and is based on the measurement of...
-
Projekt badawczy BRIK: Opracowanie innowacyjnej metody wyznaczania precyzyjnej trajektorii pojazdu szynowego
PublikacjaW artykule przedstawiono podstawowe informacje dotyczące projektu badawczego realizowanego na zlecenie Narodowego Centrum Badań i Rozwoju oraz Spółki PKP Polskie Linie Kolejowe S. A. przez Konsorcjum Politechniki Gdańskiej i Uniwersytetu Morskiego w Gdyni. Projekt obejmuje wykorzystanie nowoczesnych metod pomiarowych, takich jak techniki pozycjonowania satelitarnego GNSS, pomiary inercyjne INS oraz skaning laserowy LS, w procesie...
-
Mathematical modeling and prediction of pit to crack transition under cyclic thermal load using artificial neural network
PublikacjaThe formation of pitting is a major problem in most metals, which is caused by extremely localized corrosion that creates small holes in metal and subsequently, it changes into cracks under mechanical load, thermo-mechanical stress, and corrosion process factors. This research aims to study pit to crack transition phenomenon of steel boiler heat tubes under cyclic thermal load, and mathematical modeling...
-
Iterative Global Sensitivity Analysis Algorithm with Neural Network Surrogate Modeling
PublikacjaGlobal sensitivity analysis (GSA) is a method to quantify the effect of the input parameters on outputs of physics-based systems. Performing GSA can be challenging due to the combined effect of the high computational cost of each individual physics-based model, a large number of input parameters, and the need to perform repetitive model evaluations. To reduce this cost, neural networks (NNs) are used to replace the expensive physics-based...
-
Study of various machine learning approaches for Sentinel-2 derived bathymetry
PublikacjaIn recent years precise and up-to-date information regarding seabed depth has become more and more important for companies and institutions that operate on coastlines. While direct, in-situ measurements are performed regularly, they are expensive, time-consuming and impractical to be performed in short time intervals. At the same time, an ever-increasing amount of satellite imaging data becomes available. With these images, it...
-
Marine and Cosmic Inspirations for AI Algorithms
PublikacjaArtificial Intelligence (AI) is a scientific area that currently sees an enormous growth. Various new algorithms and methods are developed and many of them meets practical, successful applications. Authors of new algorithms draw different inspirations. Probably the most common one is the nature. For example, Artificial Neural Networks were inspired by the structure of human brain and nervous system while the classic Genetic Algorithm...
-
Generalized regression neural network and fitness dependent optimization: Application to energy harvesting of centralized TEG systems
PublikacjaThe thermoelectric generator (TEG) system has attracted extensive attention because of its applications in centralized solar heat utilization and recoverable heat energy. The operating efficiency of the TEG system is highly affected by operating conditions. In a series-parallel structure, due to diverse temperature differences, the TEG modules show non-linear performance. Due to the non-uniform temperature distribution (NUTD) condition,...
-
Towards a modification of a regulatory framework aiming at bunker oil spill prevention from ships - A design aspect of bunker tanks vents location guided by CFD simulations
PublikacjaAlthough accidental bunker oil spills at seaway are relatively rare events, they can be pose real threat to the natural marine environment. One of the reasons for the bunker spill to occur is a design failure; one of the ways it can demonstrate is an improper location or height of vent heads, leading to a bunker oil discharge during heavy rolling, due to sloshing phenomenon. Design of a ship and her systems is guided by various...
-
Vehicle detector training with minimal supervision
PublikacjaRecently many efficient object detectors based on convolutional neural networks (CNN) have been developed and they achieved impressive performance on many computer vision tasks. However, in order to achieve practical results, CNNs require really large annotated datasets for training. While many such databases are available, many of them can only be used for research purposes. Also some problems exist where such datasets are not...
-
Verification of the Parameterization Methods in the Context of Automatic Recognition of Sounds Related to Danger
PublikacjaW artykule opisano aplikację, która automatycznie wykrywa zdarzenia dźwiękowe takie jak: rozbita szyba, wystrzał, wybuch i krzyk. Opisany system składa się z bloku parametryzacji i klasyfikatora. W artykule dokonano porównania parametrów dedykowanych dla tego zastosowania oraz standardowych deskryptorów MPEG-7. Porównano też dwa klasyfikatory: Jeden oparty o Percetron (sieci neuronowe) i drugi oparty o Maszynę wektorów wspierających....
-
Implementing artificial intelligence in forecasting the risk of personal bankruptcies in Poland and Taiwan
PublikacjaResearch background: The global financial crisis from 2007 to 2012, the COVID-19 pandemic, and the current war in Ukraine have dramatically increased the risk of consumer bankruptcies worldwide. All three crises negatively impact the financial situation of households due to increased interest rates, inflation rates, volatile exchange rates, and other significant macroeconomic factors. Financial difficulties may arise when the...
-
Deep learning techniques for biometric security: A systematic review of presentation attack detection systems
PublikacjaBiometric technology, including finger vein, fingerprint, iris, and face recognition, is widely used to enhance security in various devices. In the past decade, significant progress has been made in improving biometric sys- tems, thanks to advancements in deep convolutional neural networks (DCNN) and computer vision (CV), along with large-scale training datasets. However, these systems have become targets of various attacks, with...
-
ENVIRONMENTALLY FRIENDLY MATERIALS IN ARCHITECTURE � MODERN TRENDS AND DEVELOPMENT DIRECTIONS
PublikacjaFor a long time the interest in environmentally friendly materials in architecture is no longer limited to the use of renewable and natural substances such as wood, stone, straw, or reusable materials, such as metals or glass. Today the so-called naturals and the materials compatible with the idea of sustainability constantly appear on the market in new forms. Increasing awareness of the necessity to limit the building sector’s...
-
Karol Flisikowski dr inż.
OsobyKarol Flisikowski jest profesorem uczelni w Katedrze Statystyki i Ekonometrii, Wydziału Zarządzania i Ekonomii Politechniki Gdańskiej. Jest odpowiedzialny jest za prowadzenie zajęć ze statystyki opisowej i matematycznej (w języku polskim i angielskim), a także badań naukowych w zakresie statystyki społecznej. Był uczestnikiem wielu konferencji o zasięgu krajowym, jak i międzynarodowym, gdzie prezentował wyniki prowadzonych przez...
-
The Contemporary aspects of revitalization of the buildings and the port areas
PublikacjaPort cities are the forefront of globalization. The continued growth of international trade of goods and services has now played a major role in shaping the economic and social world. Strategies for mutual cooperation and follow-up between countries, cities and regions are increasingly complex. On the one hand it brings profits, on the other leads to destabilization and the need for transformation and constant modernization. Port...
-
Orken Mamyrbayev Professor
Osoby1. Education: Higher. In 2001, graduated from the Abay Almaty State University (now Abay Kazakh National Pedagogical University), in the specialty: Computer science and computerization manager. 2. Academic degree: Ph.D. in the specialty "6D070300-Information systems". The dissertation was defended in 2014 on the topic: "Kazakh soileulerin tanudyn kupmodaldy zhuyesin kuru". Under my supervision, 16 masters, 1 dissertation...