Wyniki wyszukiwania dla: FRACTIONAL DIFFERENTIAL EQUATIONS WITH DELAYED ARGUMENTS
-
Electromagnetic Control and Dynamics of Generalized Burgers’ Nanoliquid Flow Containing Motile Microorganisms with Cattaneo–Christov Relations: Galerkin Finite Element Mechanism
PublikacjaIn our research work, we have developed a model describing the characteristics of the bio-convection and moving microorganisms in the flows of a magnetized generalized Burgers’ nanoliquid with Fourier’s and Fick’s laws in a stretchable sheet. Considerations have been made to Cattaneo–Christov mass and heat diffusion theory. According to the Cattaneo–Christov relation, the Buongiorno phenomenon for the motion of a nanoliquid in...
-
A Novel Approach to Fully Nonlinear Mathematical Modeling of Tectonic Plates
PublikacjaThe motion of the Earth's layers due to internal pressures is simulated in this research with an efficient mathematical model. The Earth, which revolves around its axis of rotation and is under internal pressure, will change the shape and displacement of the internal layers and tectonic plates. Applied mathematical models are based on a new approach to shell theory involving both two and three-dimensional approaches. It is the...
-
Numerical Test for Stability Evaluation of Discrete-Time Systems
PublikacjaIn this paper, a new numerical test for stability evaluation of discrete-time systems is presented. It is based on modern root-finding techniques at the complex plane employing the Delaunay triangulation and Cauchy's Argument Principle. The method evaluates if a system is stable and returns possible values and multiplicities of unstable zeros of the characteristic equation. For state-space discrete-time models, the developed test...
-
Efficiency of acoustic heating in the Maxwell fluid
PublikacjaThe nonlinear effects of sound in a fluid describing by the Maxwell model of the viscous stress tensor is the subject of investigation. Among other, viscoelastic biological media belong to this non-newtonian type of fluids. Generation of heating of the medium caused by nonlinear transfer of acoustic energy, is discussed in details. The governing equation of acoustic heating is derived by means of the special linear combination...
-
Efficiency of acoustic heating in the Maxwell fluid
PublikacjaThe nonlinear effects of sound in a fluid describing by the Maxwell model of the viscous stress tensor is the subject of investigation. Among other, viscoelastic biological media belong to this non-newtonian type of fluids. Generation of heating of the medium caused by nonlinear transfer of acoustic energy, is discussed in details. The governing equation of acoustic heating is derived by means of the special linear combination...
-
Analytical method of determining dynamic properties of thermocouples used in measurements of quick – changing temperatures of exhaust gases in marine diesel engines
PublikacjaThe article presents selected issues of mathematical modeling of heat exchange between the thermocouple and the exhaust gas flowing them, in unsteady conditions. On the way of energy balancing consideration of thermodynamic processes developed differential equations describing the dynamic properties for three versions of the design sheathed thermocouples: with weld isolated from the sheath, with weld welded the sheath and with...
-
A new approach to determination of the two-mass model parameters of railway current collector
PublikacjaThe paper presents two mathematical models of railway current collectors both with two degrees of freedom. The first one, hereinafter Pantograph Articulated Model (PAM), has one degree of freedom in rotational motion and the second degree of freedom in translational motion. The second model, called henceforth as Pantograph Reference Model (PRM), has both degrees of freedom in translational motion. Differential equations of the...
-
A new approach to determination of the two-mass model parameters of railway current collector
PublikacjaThe paper presents two mathematical models of railway current collectors both with two degrees of freedom. The first one, hereinafter Pantograph Articulated Model (PAM), has one degree of freedom in rotational motion and the second degree of freedom in translational motion. The second model, called henceforth as Pantograph Reference Model (PRM), has both degrees of freedom in translational motion. Differential equations of the...
-
Transition curve with smoothed curvature at its ends for railway roads
PublikacjaIn the paper, in view of a railway ballasted track, a new concept of transition curve of linear form of curvature along its length and smoothed extreme regions is presented. For this purpose use has been made of an original, universal method for identifying transition curves by means of differential equations. Some general curvature equations for three regions investigated have been determined to be followed by appropriate parametric...
-
On possible applications of media described by fractional-order models in electromagnetic cloaking
PublikacjaThe purpose of this paper is to open a scientific discussion on possible applications of media described by fractional-order (FO) models (FOMs) in electromagnetic cloaking. A 2-D cloak based on active sources and the surface equivalence theorem is simulated. It employs a medium described by FOM in communication with sources cancelling the scattered field. A perfect electromagnetic active cloak is thereby demonstrated with the use...
-
Experimental and numerical studies on the mechanical response of a piezoelectric nanocomposite-based functionally graded materials
PublikacjaThis work presents an experimental study of piezoelectric structures reinforced by graphene platelets, based on the concept of the functionally graded materials (FGMs). The assumed model is a rectangular beam/plate and the composition is due to the Halpin-Tsai rule. The model is also simulated in the Abaqus software which is the first time that such a structure has been modelled in an FEM package. In addition, a mathematical model...
-
Parameter and delay estimation of linear continuous-time systems
PublikacjaIn this paper the problem of on-line identification of non-stationary delay systems is considered. Dynamics of supervised industrial processes is described by ordinary differential equations. Discrete-time mechanization of their continuous-time representations is based on dedicated finite-horizon integrating filters. Least-squares and instrumental variable procedures implemented in recursive forms are applied for simultaneous identification...
-
Identification of transition curves in vehicular roads and railways
PublikacjaIn the paper attention is focused on the necessity to systematize the procedure for determining the shape of transition curves used in vehicular roads and railway routes. There has been presented a universal method of identifying curvature in transition curves by using differential equations. Curvature equations for such known forms of transition curves as clothoid, quartic parabola, the Bloss curve, cosinusoid and sinusoid, have...
-
On forced vibrations of piezo-flexomagnetic nano-actuator beams
PublikacjaThe effect of excitation frequency on the piezomagnetic Euler-Bernoulli nanobeam taking the flexomagnetic material phenomenon into consideration is investigated in this chapter. The magnetization with strain gradients creates flexomagneticity. We couple simultaneously the piezomagnetic and flexomagnetic properties in an inverse magnetization. Resemble the flexoelectricity, the flexomagneticity is also size-dependent. So, it has...
-
Ultrashort Opposite Directed Pulses Dynamics with Kerr Effect and Polarization Account
PublikacjaWe present the application of projection operator methods to solving the problem of the propagation and interaction of short optical pulses of different polarizations and directions in a nonlinear dispersive medium. We restrict ourselves by the caseof one-dimensional theory, taking into account material dispersion and Kerr nonlinearity. The construction of operators is delivered in two variants: for the Cauchy problem and for the...
-
Numerical Analysis of the Influence of 2D Dispersion Parameters on the Spread of Pollutants in the Coastal Zone
PublikacjaThe transport of pollutants with flowing waters is one of the most common processes in the natural environment. In general, this process is described by a system of differential equations, including the continuity equation, dynamic equations, pollutant transport equations and equations of state. For the analyzed problem of pollutant migration in wide rivers and the coastal zone, a two-dimensional model is particularly useful because...
-
Parameter and delay estimation of linear continuous-time systems
PublikacjaIn this paper the problem of on-line identification of non-stationary delay systems is considered. Dynamics of supervised industrial processes is usually described by ordinary differential equations. Discrete-time mechanization of their continuous-time representations is based on dedicated finite-horizon integrating filters. Least-squares and instrumental variable procedures implemented in recursive forms are applied for simultaneous...
-
Analytical method of modelling the geometric system of communication route
PublikacjaThe paper presents a new analytical approach to modelling the curvature of a communication route by making use of differential equations. The method makes it possible to identify both linear and nonlinear curvature. It enables us to join curves of the same or opposite signs of curvature. Solutions of problems for linear change of curvature and selected variants of nonlinear curvature in polynomial and trigonometric form were analyzed....
-
On–line Parameter and Delay Estimation of Continuous–Time Dynamic Systems
PublikacjaThe problem of on-line identification of non-stationary delay systems is considered. The dynamics of supervised industrial processes are usually modeled by ordinary differential equations. Discrete-time mechanizations of continuous-time process models are implemented with the use of dedicated finite-horizon integrating filters. Least-squares and instrumental variable procedures mechanized in recursive forms are applied for simultaneous...
-
Bending and buckling formulation of graphene sheets based on nonlocal simple first-order shear deformation theory
PublikacjaThis paper presents a formulation based on simple first-order shear deformation theory (S-FSDT) for large deflection and buckling of orthotropic single-layered graphene sheets (SLGSs). The S-FSDT has many advantages compared to the classical plate theory (CPT) and conventional FSDT such as needless of shear correction factor, containing less number of unknowns than the existing FSDT and strong similarities with the CPT. Governing...
-
A Parallel Corpus-Based Approach to the Crime Event Extraction for Low-Resource Languages
PublikacjaThese days, a lot of crime-related events take place all over the world. Most of them are reported in news portals and social media. Crime-related event extraction from the published texts can allow monitoring, analysis, and comparison of police or criminal activities in different countries or regions. Existing approaches to event extraction mainly suggest processing texts in English, French, Chinese, and some other resource-rich...
-
Balance errors generated by numerical diffusion in the solution of non-linear open channel flow equations
PublikacjaThe paper concerns the untypical aspect of application of the dissipative numerical methods to solve nonlinear hyperbolic partial differential equations used in open channel hydraulics. It is shown that in some cases the numerical diffusion generated by the applied method of solution produces not only inaccurate solution but as well as a balance error. This error may occur even for an equation written in the conservative form not...
-
Homoclinic and Heteroclinic Orbits for a Class of Singular Planar Newtonian Systems
PublikacjaThe study of existence and multiplicity of solutions of differential equations possessing a variational nature is a problem of great meaning since most of them derives from mechanics and physics. In particular, this relates to Hamiltonian systems including Newtonian ones. During the past thirty years there has been a great deal of progress in the use of variational methods to find periodic, homoclinic and heteroclinic solutions...
-
Non-linear static stability of bi-layer carbon nanosheets resting on an elastic matrix under various types of in-plane shearing loads in thermo-elasticity using nonlocal continuum
PublikacjaIn this research, the shear and thermal buckling of bi-layer rectangular orthotropic carbon nanosheets embedded on an elastic matrix using the nonlocal elasticity theory and non-linear strains of Von-Karman was studied. The bi-layer carbon sheets were modeled as a double-layered plate, and van der Waals forces between layers were considered. The governing equations and boundary conditions were obtained using the first order shear...
-
On the plastic buckling of curved carbon nanotubes
PublikacjaThis research, for the first time, predicts theoretically static stability response of a curved carbon nanotube (CCNT) under an elastoplastic behavior with several boundary conditions. The CCNT is exposed to axial compressive loads. The equilibrium equations are extracted regarding the Euler–Bernoulli displacement field by means of the principle of minimizing total potential energy. The elastoplastic stress-strain is concerned...
-
A finite element analysis of thermal energy inclination based on ternary hybrid nanoparticles influenced by induced magnetic field
PublikacjaThe use of hybrid nanoparticles to improve thermal processes is a key method that has implications for a variety of interventions utilized in many sectors. This paper aimed to look into the impacts of ternary nanoparticles on hyperbolic tangent materials to establish their thermal characteristics. Flow describing equations have been explored in the presence of heat production, non-Fourier heat flux, and an induced magnetic field....
-
Acoustic heating produced in the boundary layer
Publikacja: Instantaneous acoustic heating of a viscous fluid flow in a boundary layer is the subject of investigation. The governing equation of acoustic heating is derived by means of a special linear combination of conservation equations in the differential form, which reduces all acoustic terms in the linear part of the final equation but preserves terms belonging to the thermal mode. The procedure of decomposition is valid in a weakly...
-
Analytical Steady-State Model of the Pipeline Flow Process
PublikacjaThe paper addresses the issue of modeling the flow process in transmission pipelines. A base model used for numerical simulation is introduced. Under certain assumptions concerning steady state analysis, the differential equations describing the process are solved analytically for two cases: zero and nonzero inclination angle α. These equations describe a constant flow rate and a corresponding distribution of the pressure along...
-
Modal modification of structural damping applied to increase the stability and convergence of numerical integration
PublikacjaThe presented paper refers to numerical tests done on systems fused of multibody and finite-element parts. The appearance of its multibody part gives rise to significant nonlinear components, i.e., second-order nonlinear differential equations express the dynamics. We usually solve these equations by “step-by-step” integration methods. When using the currently available integration algorithms, we approximate these initial systems...
-
Bistability in a One-Dimensional Model of a Two-Predators-One-Prey Population Dynamics System
PublikacjaIn this paper, we study a classical two-predators-one-prey model. The classical model described by a system of three ordinary differential equations can be reduced to a one-dimensional bimodalmap. We prove that this map has at most two stable periodic orbits. Besides, we describe the bifurcation structure of the map. Finally, we describe a mechanism that leads to bistable regimes. Taking this mechanism into account, one can easily...
-
Modelling of Diffusing Capacity Measurement Results in Lung Microangiopathy Patients. A novel Diagnostic Suppport
PublikacjaLung microangiopathy is a little known negative influence of diabetes mellitus on the functioning of the lungs. The aim of this study is to design a supportive method for diagnosing lung microangiopathy. This will be based on routinely performed pulmonary measurements as well as on investigation process modelling and data processing. A model of the diffusion of oxygen from the alveoli to the blood has been described with a set...
-
Vibration of the bridge under moving singular loads - theoretical formulation and numerical solution
PublikacjaThe paper presents the results of the numerical analysis of a simple vehicle passing over a simply supported bridge span. The bridge is modelled by a Euler-Bernoulli beam. The vehicle is modelled as a linear, visco-elastic oscillator, moving at a constant speed. The system is described by a set of differential equations of motion and solved numerically using the Runge-Kutta algorithm. The results are compared with the solution...
-
A Stand for Measurement and Prediction of Scattering Properties of Diffusers
PublikacjaIn this paper we present a set of solutions which may be used for prototyping and simulation of acoustic scattering devices. A system proposed is capable of measuring sound field. Also a way to use an open source solution for simulation of scattering phenomena occurring in proximity of acoustic diffusers is shown. The result of our work are measurement procedure and a prototype of the simulation script based on FEniCS - an open source...
-
Design criterion for hydrodynamic vortex separators
PublikacjaTechnical objects designing involves determination of geometrical parameters that characterize a given object. When the device is described by the differential equations, an inverse problem brings difficulties, as geometrical values sought condition the solution to the problem. Vortex separators can be designed by the "criterion method'. Firstly, a critical particle is distinguished such that bigger particles are removed from...
-
Efficiency of acoustic heating produced in the thermoviscous flow of a fluid with relaxation
PublikacjaInstantaneous acoustic heating of a fluid with thermodynamic relaxation is the subject of investigation. Among others, viscoelastic biological media described by the Maxwell model of the viscous stress tensor, belong to this type of fluid. The governing equation of acoustic heating is derived by means of the special linear combination of conservation equations in differential form, allowing the reduction of all acoustic terms in...
-
Acoustic heating produced in the thermoviscous flow of a bingham plastic
PublikacjaThis study is devoted to the instantaneous acoustic heating of a Bingham plastic. The model of the Bingham plastic's viscous stress tensor includes the yield stress along with the shear viscosity, which differentiates a Bingham plastic from a viscous Newtonian fluid. A special linear combination of the conservation equations in differential form makes it possible to reduce all acoustic terms in the linear part of of the final equation...
-
Nonlinear planar modeling of massive taut strings travelled by a force-driven point-mass
PublikacjaThe planar response of horizontal massive taut strings, travelled by a heavy point-mass, either driven by an assigned force, or moving with an assigned law, is studied. A kinematically exact model is derived for the free boundary problem via a variational approach, accounting for the singularity in the slope of the deflected string. Reactive forces exchanged between the point-mass and the string are taken into account via Lagrange...
-
Acoustic heating produced in the thermoviscous flow of a Bingham plastic
PublikacjaThis study is devoted to the instantaneous acoustic heating of a Bingham plastic. The model of the Bingham plastic's viscous stress tensor includes the yield stress along with the shear viscosity, which differentiates a Bingham plastic from a viscous Newtonian fluid. A special linear combination of the conservation equations in differential form makes it possible to reduce all acoustic terms in the linear part of of the final equation...
-
Thermal analysis of Magnetohydrodynamics (MHD) Casson fluid with suspended Iron (II, III) oxide-aluminum oxide-titanium dioxide ternary-hybrid nanostructures
PublikacjaThis study is carried out to enhance and analyze the thermal performance of non-Newtonian Casson fluid by immersing Ternary hybrid nanoparticles Fe3O4-Al2O3-TiO2 uniformly. To model the behaviour of such complex phenomena mathematically, a system of complex transport differential equations is developed by utilizing a non-Fourier heat transfer model for energy transport. The non-dimensional system of transport equations involving...
-
Nonlocal three-dimensional theory of elasticity for buckling behavior of functionally graded porous nanoplates using volume integrals
PublikacjaIn this paper, the buckling of rectangular functionally graded (FG) porous nanoplates based on threedimensional elasticity is investigated. Since, similar researches have been done in two-dimensional analyses in which only large deflections with constant thickness were studied by using various plate theories; therefore, discussion of large deformations and change in thickness of plates after deflection in this study is examined....
-
A high-accuracy method of computation of x-ray waves propagation through an optical system consisting of many lenses
PublikacjaThe propagation of X-ray waves through an optical system consisting of many X-ray refractive lenses is considered. Two differential equations are contemplated for solving the problem for electromagnetic wave propagation: first – an equation for the electric field, second – an equation derived for a complex phase of an electric field. Both equations are solved by the use of a finite-difference method. The simulation error is estimated...
-
On Nonlinear Bending Study of a Piezo-Flexomagnetic Nanobeam Based on an Analytical-Numerical Solution
PublikacjaAmong various magneto-elastic phenomena, flexomagnetic (FM) coupling can be defined as a dependence between strain gradient and magnetic polarization and, contrariwise, elastic strain and magnetic field gradient. This feature is a higher-order one than piezomagnetic, which is the magnetic response to strain. At the nanoscale, where large strain gradients are expected, the FM effect is significant and could be even dominant. In...
-
Simplified probabilistic analysis of settlement of cyclically loaded soil stratum using point estimate method
PublikacjaThe paper deals with the probabilistic analysis of settlement of a non-cohesive soil layer subjected to cyclic loading. Originally, the settlement assessment is based on deterministic compaction model which requires integration of a set of differential equations. However, making use of the Bessel functions the settlement of the soil stratum can be calculated by means of simplified algorithm. The compaction model parameters were...
-
Existence and uniqueness for neutral equations with state dependent delays
PublikacjaW pracy w celu wykazania istnienia i jednoznaczności rozwiązania równania została zaprezentowana metoda porównawcza.
-
Activation Energy and Inclination Magnetic Dipole Influences on Carreau Nanofluid Flowing via Cylindrical Channel with an Infinite Shearing Rate
PublikacjaThe infinite shear viscosity model of Carreau fluid characterizes the attitude of fluid flow at a very high/very low shear rate. This model has the capacity for interpretation of fluid at both extreme levels, and an inclined magnetic dipole in fluid mechanics has its valuable applications such as magnetic drug engineering, cold treatments to destroy tumors, drug targeting, bio preservation, cryosurgery, astrophysics, reaction kinetics,...
-
Modeling of medium flow processes in transportation pipelines - the synthesis of their state-space models and the analysis of the mathematical properties of the models for leak detection purposes
PublikacjaThe dissertation concerns the issue of modeling the pipeline flow process under incompressible and isothermal conditions, with a target application to the leak detection and isolation systems. First, an introduction to the model-based process diagnostics is provided, where its basic terminology, tools, and methods are described. In the following chapter, a review of the state of the art in the field of leak detection and isolation...
-
Modeling and simulation of blood flow under the influence of radioactive materials having slip with MHD and nonlinear mixed convection
PublikacjaRadioactive materials are widely in industry, nuclear plants and medical treatments. Scientists and workers in these fields are mostly exposed to such materials, and adverse effects on blood and temperature profiles are observed. In this regard, objective of the current study is to model and simulate blood based nanofluid with three very important radioactive materials, named as Uranium dioxide (UO2), Thorium dioxide (ThO2) and...
-
The finite difference methods of computation of X-rays propagation through a system of many lenses
PublikacjaThe propagation of X-ray waves through an optical system consisting of many beryllium X-ray refrac- tive lenses is considered. In order to calculate the propagation of electromagnetic in the optical sys- tem, two differential equations are considered. First equation for an electric field of a monochromatic wave and the second equation derived for complex phase of the same electric The propagation of X-ray waves through an optical system...
-
Arterial cannula shape optimization by means of the rotational firefly algorithm
PublikacjaThe article presents global optimization results of arterial cannula shapes by means of the newly modified firefly algorithm. The search for the optimal arterial cannula shape is necessary in order to minimize losses and prepare the flow that leaves the circulatory support system of a ventricle (i.e. blood pump) before it reaches the heart. A modification of the standard firefly algorithm, the so-called rotational firefly algorithm,...
-
Kształtowanie toru zwrotnego rozjazdu z odcinkami krzywizny liniowej
PublikacjaW pracy została przedstawiona analityczna metoda kształtowania toru zwrotnego rozjazdu kolejowego posiadającego na swojej długości odcinki krzywizny liniowej. Odróżnia go to w istotny sposób od rozwiązania typowego, stanowiącego pojedynczy łuk kołowy bez krzywych przejściowych. W metodzie tej dokonano identyfikacji problemu rozkładu krzywizny za pomocą równań różniczkowych. Uzyskane rozwiązania mają charakter uniwersalny; m. in....