Wyniki wyszukiwania dla: CONVOLUTIONAL NETWORKS
-
Characterizing the Scalability of Graph Convolutional Networks on Intel® PIUMA
PublikacjaLarge-scale Graph Convolutional Network (GCN) inference on traditional CPU/GPU systems is challenging due to a large memory footprint, sparse computational patterns, and irregular memory accesses with poor locality. Intel’s Programmable Integrated Unffied Memory Architecture (PIUMA) is designed to address these challenges for graph analytics. In this paper, a detailed characterization of GCNs is presented using the Open-Graph Benchmark...
-
Performance Analysis of Convolutional Neural Networks on Embedded Systems
PublikacjaMachine learning is no longer confined to cloud and high-end server systems and has been successfully deployed on devices that are part of Internet of Things. This paper presents the analysis of performance of convolutional neural networks deployed on an ARM microcontroller. Inference time is measured for different core frequencies, with and without DSP instructions and disabled access to cache. Networks use both real-valued and...
-
Clothes Detection and Classification Using Convolutional Neural Networks
PublikacjaIn this paper we describe development of a computer vision system for accurate detection and classification of clothes for e-commerce images. We present a set of experiments on well established architectures of convolutional neural networks, including Residual networks, SqueezeNet and Single Shot MultiBox Detector (SSD). The clothes detection network was trained and tested on DeepFashion dataset, which contains box annotations...
-
Architectural Modifications to Enhance Steganalysis with Convolutional Neural Networks
PublikacjaThis paper investigates the impact of various modifications introduced to current state-of-the-art Convolutional Neural Network (CNN) architectures specifically designed for the steganalysis of digital images. Usage of deep learning methods has consistently demonstrated improved results in this field over the past few years, primarily due to the development of newer architectures with higher classification accuracy compared to...
-
Abdominal Aortic Aneurysm segmentation from contrast-enhanced computed tomography angiography using deep convolutional networks
PublikacjaOne of the most common imaging methods for diagnosing an abdominal aortic aneurysm, and an endoleak detection is computed tomography angiography. In this paper, we address the problem of aorta and thrombus semantic segmentation, what is a mandatory step to estimate aortic aneurysm diameter. Three end-to-end convolutional neural networks were trained and evaluated. Finally, we proposed an ensemble of deep neural networks with underlying...
-
Automatic Breath Analysis System Using Convolutional Neural Networks
PublikacjaDiseases related to the human respiratory system have always been a burden for the entire society. The situation has become particularly difficult now after the outbreak of the COVID-19 pandemic. Even now, however, it is not uncommon for people to consult their doctor too late, after the disease has developed. To protect patients from severe disease, it is recommended that any symptoms disturbing the respiratory system be detected...
-
Automatic Breath Analysis System Using Convolutional Neural Networks
PublikacjaDiseases related to the human respiratory system have always been a burden for the entire society. The situation has become particularly difficult now after the outbreak of the COVID-19 pandemic. Even now, however, it is common for people to consult their doctor too late, after the disease has developed. To protect patients from severe disease, it is recommended that any symptoms disturbing the respiratory system be detected as...
-
Recognition of Emotions in Speech Using Convolutional Neural Networks on Different Datasets
PublikacjaArtificial Neural Network (ANN) models, specifically Convolutional Neural Networks (CNN), were applied to extract emotions based on spectrograms and mel-spectrograms. This study uses spectrograms and mel-spectrograms to investigate which feature extraction method better represents emotions and how big the differences in efficiency are in this context. The conducted studies demonstrated that mel-spectrograms are a better-suited...
-
System for monitoring road slippery based on CCTV cameras and convolutional neural networks
PublikacjaThe slipperiness of the surface is essential for road safety. The growing number of CCTV cameras opens the possibility of using them to automatically detect the slippery surface and inform road users about it. This paper presents a system of developed intelligent road signs, including a detector based on convolutional neural networks (CNNs) and the transferlearning method employed to the processing of images acquired with video...
-
A Novel Iterative Decoding for Iterated Codes Using Classical and Convolutional Neural Networks
PublikacjaForward error correction is crucial for communication, enabling error rate or required SNR reduction. Longer codes improve correction ratio. Iterated codes offer a solution for constructing long codeswith a simple coder and decoder. However, a basic iterative code decoder cannot fully exploit the code’s potential, as some error patterns within its correction capacity remain uncorrected.We propose two neural network-assisted decoders:...
-
Visual Features for Improving Endoscopic Bleeding Detection Using Convolutional Neural Networks
PublikacjaThe presented paper investigates the problem of endoscopic bleeding detection in endoscopic videos in the form of a binary image classification task. A set of definitions of high-level visual features of endoscopic bleeding is introduced, which incorporates domain knowledge from the field. The high-level features are coupled with respective feature descriptors, enabling automatic capture of the features using image processing methods....
-
Using Convolutional Neural Networks for Corneal Arcus Detection Towards Familial Hypercholesterolemia Screening
PublikacjaFamilial hypercholesterolemia (FH) is a highly undiagnosed disease. Among FH patients, the onset of premature coronary artery disease is 13 times higher than in the general population. Early diagnosis and treatment is essential to prevent cardiovascular diseases and their complications, and to prolong life. One of the clinical criteria of FH is the occurrence of a corneal arcus (CA) among patients, especially those under 45 years...
-
A novel approach exploiting properties of convolutional neural networks for vessel movement anomaly detection and classification
PublikacjaThe article concerns the automation of vessel movement anomaly detection for maritime and coastal traffic safety services. Deep Learning techniques, specifically Convolutional Neural Networks (CNNs), were used to solve this problem. Three variants of the datasets, containing samples of vessel traffic routes in relation to the prohibited area in the form of a grayscale image, were generated. 1458 convolutional neural networks with...
-
Convolutional Neural Networks for C. Elegans Muscle Age Classification Using Only Self-Learned Features
PublikacjaNematodes Caenorhabditis elegans (C. elegans) have been used as model organisms in a wide variety of biological studies, especially those intended to obtain a better understanding of aging and age-associated diseases. This paper focuses on automating the analysis of C. elegans imagery to classify the muscle age of nematodes based on the known and well established IICBU dataset. Unlike many modern classification methods, the proposed...
-
DEEP CONVOLUTIONAL NEURAL NETWORKS AS A DECISION SUPPORT TOOL IN MEDICAL PROBLEMS – MALIGNANT MELANOMA CASE STUDY
PublikacjaThe paper presents utilization of one of the latest tool from the group of Machine learning techniques, namely Deep Convolutional Neural Networks (CNN), in process of decision making in selected medical problems. After the survey of the most successful applications of CNN in solving medical problems, the paper focuses on the very difficult problem of automatic analyses of the skin lesions. The authors propose the CNN structure...
-
GPU Power Capping for Energy-Performance Trade-Offs in Training of Deep Convolutional Neural Networks for Image Recognition
PublikacjaIn the paper we present performance-energy trade-off investigation of training Deep Convolutional Neural Networks for image recognition. Several representative and widely adopted network models, such as Alexnet, VGG-19, Inception V3, Inception V4, Resnet50 and Resnet152 were tested using systems with Nvidia Quadro RTX 6000 as well as Nvidia V100 GPUs. Using GPU power capping we found other than default configurations minimizing...
-
Age Prediction from Low Resolution, Dual-Energy X-ray Images Using Convolutional Neural Networks
PublikacjaAge prediction from X-rays is an interesting research topic important for clinical applications such as biological maturity assessment. It is also useful in many other practical applications, including sports or forensic investigations for age verification purposes. Research on these issues is usually carried out using high-resolution X-ray scans of parts of the body, such as images of the hands or images of the chest. In this...
-
Flexible Knowledge–Vision–Integration Platform for Personal Protective Equipment Detection and Classification Using Hierarchical Convolutional Neural Networks and Active Leaning
PublikacjaThis work is part of an effort to develop of a Knowledge-Vision Integration Platform for Hazard Control (KVIP-HC) in industrial workplaces, adaptable to a wide range of industrial environments. The paper focuses on hazards resulted from the non-use of personal protective equipment (PPE). The objective is to test the capability of the platform to adapt to different industrial environments by simulating the process of randomly selecting...
-
Activation maps of convolutional neural networks as a tool for brain degeneration tracking in early diagnosis of dementia in Parkinson's disease based on magnetic resonance imaging
Publikacja -
Piotr Szczuko dr hab. inż.
OsobyDr hab. inż. Piotr Szczuko w 2002 roku ukończył studia na Wydziale Elektroniki, Telekomunikacji i Informatyki Politechniki Gdańskiej zdobywając tytuł magistra inżyniera. Tematem pracy dyplomowej było badanie zjawisk jednoczesnej percepcji obrazu cyfrowego i dźwięku dookólnego. W roku 2008 obronił rozprawę doktorską zatytułowaną "Zastosowanie reguł rozmytych w komputerowej animacji postaci", za którą otrzymał nagrodę Prezesa Rady...
-
Neural networks and deep learning
PublikacjaIn this chapter we will provide the general and fundamental background related to Neural Networks and Deep Learning techniques. Specifically, we divide the fundamentals of deep learning in three parts, the first one introduces Deep Feed Forward Networks and the main training algorithms in the context of optimization. The second part covers Convolutional Neural Networks (CNN) and discusses their main advantages and shortcomings...
-
Exploring Neural Networks for Musical Instrument Identification in Polyphonic Audio
PublikacjaThe purpose of this paper is to introduce neural network-based methods that surpass state-of-the-art (SOTA) models, either by training faster or having simpler architecture, while maintaining comparable effectiveness in musical instrument identification in polyphonic music. Several approaches are presented, including two authors’ proposals, i.e., spiking neural networks (SNN) and a modular deep learning model named FMCNN (Fully...
-
An Improved Convolutional Neural Network for Steganalysis in the Scenario of Reuse of the Stego-Key
PublikacjaThe topic of this paper is the use of deep learning techniques, more specifically convolutional neural networks, for steganalysis of digital images. The steganalysis scenario of the repeated use of the stego-key is considered. Firstly, a study of the influence of the depth and width of the convolution layers on the effectiveness of classification was conducted. Next, a study on the influence of depth and width of fully connected...
-
From Linear Classifier to Convolutional Neural Network for Hand Pose Recognition
PublikacjaRecently gathered image datasets and the new capabilities of high-performance computing systems have allowed developing new artificial neural network models and training algorithms. Using the new machine learning models, computer vision tasks can be accomplished based on the raw values of image pixels instead of specific features. The principle of operation of deep neural networks resembles more and more what we believe to be happening...
-
Deep neural networks approach to skin lesions classification — A comparative analysis
PublikacjaThe paper presents the results of research on the use of Deep Neural Networks (DNN) for automatic classification of the skin lesions. The authors have focused on the most effective kind of DNNs for image processing, namely Convolutional Neural Networks (CNN). In particular, three kinds of CNN were analyzed: VGG19, Residual Networks (ResNet) and the hybrid of VGG19 CNN with the Support Vector Machine (SVM). The research was carried...
-
A Novel IoT-Perceptive Human Activity Recognition (HAR) Approach Using Multi-Head Convolutional Attention
PublikacjaTogether with fast advancement of the Internet of Things (IoT), smart healthcare applications and systems are equipped with increasingly more wearable sensors and mobile devices. These sensors are used not only to collect data, but also, and more importantly, to assist in daily activity tracking and analyzing of their users. Various human activity recognition (HAR) approaches are used to enhance such tracking. Most of the existing...
-
Deep Learning Basics 2023/24
Kursy OnlineA course about the basics of deep learning intended for students of Computer Science. It includes an introduction to supervised machine learning, the architecture of basic artificial neural networks and their training algorithms, as well as more advanced architectures (convolutional networks, recurrent networks, transformers) and regularization and optimization techniques.
-
Machine Learning Applied to Aspirated and Non-Aspirated Allophone Classification—An Approach Based on Audio "Fingerprinting"
PublikacjaThe purpose of this study is to involve both Convolutional Neural Networks and a typical learning algorithm in the allophone classification process. A list of words including aspirated and non-aspirated allophones pronounced by native and non-native English speakers is recorded and then edited and analyzed. Allophones extracted from English speakers’ recordings are presented in the form of two-dimensional spectrogram images and...
-
Selected Technical Issues of Deep Neural Networks for Image Classification Purposes
PublikacjaIn recent years, deep learning and especially Deep Neural Networks (DNN) have obtained amazing performance on a variety of problems, in particular in classification or pattern recognition. Among many kinds of DNNs, the Convolutional Neural Networks (CNN) are most commonly used. However, due to their complexity, there are many problems related but not limited to optimizing network parameters, avoiding overfitting and ensuring good...
-
Breast MRI segmentation by deep learning: key gaps and challenges
PublikacjaBreast MRI segmentation plays a vital role in early diagnosis and treatment planning of breast anomalies. Convolutional neural networks with deep learning have indicated promise in automating this process, but significant gaps and challenges remain to address. This PubMed-based review provides a comprehensive literature overview of the latest deep learning models used for breast segmentation. The article categorizes the literature...
-
Speaker Recognition Using Convolutional Neural Network with Minimal Training Data for Smart Home Solutions
PublikacjaWith the technology advancements in smart home sector, voice control and automation are key components that can make a real difference in people's lives. The voice recognition technology market continues to involve rapidly as almost all smart home devices are providing speaker recognition capability today. However, most of them provide cloud-based solutions or use very deep Neural Networks for speaker recognition task, which are...
-
An Intelligent Approach to Short-Term Wind Power Prediction Using Deep Neural Networks
PublikacjaIn this paper, an intelligent approach to the Short-Term Wind Power Prediction (STWPP) problem is considered, with the use of various types of Deep Neural Networks (DNNs). The impact of the prediction time horizon length on accuracy, and the influence of temperature on prediction effectiveness have been analyzed. Three types of DNNs have been implemented and tested, including: CNN (Convolutional Neural Networks), GRU (Gated Recurrent...
-
User Orientation Detection in Relation to Antenna Geometry in Ultra-Wideband Wireless Body Area Networks Using Deep Learning
PublikacjaIn this paper, the issue of detecting a user’s position in relation to the antenna geometry in ultra-wideband (UWB) off-body wireless body area network (WBAN) communication using deep learning methods is presented. To measure the impulse response of the channel, a measurement stand consisting of EVB1000 devices and DW1000 radio modules was developed and indoor static measurement scenarios were performed. It was proven that for...
-
Deep neural networks for data analysis 24/25
Kursy OnlineThis course covers introduction to supervised machine learning, construction of basic artificial deep neural networks (DNNs) and basic training algorithms, as well as the overview of popular DNNs architectures (convolutional networks, recurrent networks, transformers). The course introduces students to popular regularization techniques for deep models. Besides theory, large part of the course is the project in which students apply...
-
Graph Neural Networks and Structural Information on Ionic Liquids: A Cheminformatics Study on Molecular Physicochemical Property Prediction
PublikacjaIonic liquids (ILs) provide a promising solution in many industrial applications, such as solvents, absorbents, electrolytes, catalysts, lubricants, and many others. However, due to the enormous variety of their structures, uncovering or designing those with optimal attributes requires expensive and exhaustive simulations and experiments. For these reasons, searching for an efficient theoretical tool for finding the relationship...
-
Fusion-based Representation Learning Model for Multimode User-generated Social Network Content
PublikacjaAs mobile networks and APPs are developed, user-generated content (UGC), which includes multi-source heterogeneous data like user reviews, tags, scores, images, and videos, has become an essential basis for improving the quality of personalized services. Due to the multi-source heterogeneous nature of the data, big data fusion offers both promise and drawbacks. With the rise of mobile networks and applications, UGC, which includes...
-
Neural Network Subgraphs Correlation with Trained Model Accuracy
PublikacjaNeural Architecture Search (NAS) is a computationally demanding process of finding optimal neural network architecture for a given task. Conceptually, NAS comprises applying a search strategy on a predefined search space accompanied by a performance evaluation method. The design of search space alone is expected to substantially impact NAS efficiency. We consider neural networks as graphs and find a correlation between the presence...
-
Deep neural networks for human pose estimation from a very low resolution depth image
PublikacjaThe work presented in the paper is dedicated to determining and evaluating the most efficient neural network architecture applied as a multiple regression network localizing human body joints in 3D space based on a single low resolution depth image. The main challenge was to deal with a noisy and coarse representation of the human body, as observed by a depth sensor from a large distance, and to achieve high localization precision....
-
Improving Accuracy of Contactless Respiratory Rate Estimation by Enhancing Thermal Sequences with Deep Neural Networks
PublikacjaEstimation of vital signs using image processing techniques have already been proved to have a potential for supporting remote medical diagnostics and replacing traditional measurements that usually require special hardware and electrodes placed on a body. In this paper, we further extend studies on contactless Respiratory Rate (RR) estimation from extremely low resolution thermal imagery by enhancing acquired sequences using Deep...
-
Sign Language Recognition Using Convolution Neural Networks
PublikacjaThe objective of this work was to provide an app that can automatically recognize hand gestures from the American Sign Language (ASL) on mobile devices. The app employs a model based on Convolutional Neural Network (CNN) for gesture classification. Various CNN architectures and optimization strategies suitable for devices with limited resources were examined. InceptionV3 and VGG-19 models exhibited negligibly higher accuracy than...
-
Machine Learning and Deep Learning Methods for Fast and Accurate Assessment of Transthoracic Echocardiogram Image Quality
PublikacjaHigh-quality echocardiogram images are the cornerstone of accurate and reliable measurements of the heart. Therefore, this study aimed to develop, validate and compare machine learning and deep learning algorithms for accurate and automated assessment of transthoracic echocardiogram image quality. In total, 4090 single-frame two-dimensional transthoracic echocardiogram...
-
Training of Deep Learning Models Using Synthetic Datasets
PublikacjaIn order to solve increasingly complex problems, the complexity of Deep Neural Networks also needs to be constantly increased, and therefore training such networks requires more and more data. Unfortunately, obtaining such massive real world training data to optimize neural networks parameters is a challenging and time-consuming task. To solve this problem, we propose an easy-touse and general approach to training deep learning...
-
Deep neural network architecture search using network morphism
PublikacjaThe paper presents the results of the research on neural architecture search (NAS) algorithm. We utilized the hill climbing algorithm to search for well-performing structures of deep convolutional neural network. Moreover, we used the function preserving transformations which enabled the effective operation of the algorithm in a short period of time. The network obtained with the advantage of NAS was validated on skin lesion classification...
-
Bees Detection on Images: Study of Different Color Models for Neural Networks
PublikacjaThis paper presents an approach to bee detection in video streams using a neural network classifier. We describe the motivation for our research and the methodology of data acquisition. The main contribution to this work is a comparison of different color models used as an input format for a feedforward convolutional architecture applied to bee detection. The detection process has is based on a neural binary classifier that classifies...
-
Deep learning approach on surface EEG based Brain Computer Interface
PublikacjaIn this work we analysed the application of con-volutional neural networks in motor imagery classification for the Brain Computer Interface (BCI) purposes. To increase the accuracy of classification we proposed the solution that combines the Common Spatial Pattern (CSP) with convolutional network (ConvNet). The electroencephalography (EEG) is one of the modalities we try to use for controlling the prosthetic arm. Therefor in this...
-
Classifying Emotions in Film Music - A Deep Learning Approach
PublikacjaThe paper presents an application for automatically classifying emotions in film music. A model of emotions is proposed, which is also associated with colors. The model created has nine emotional states, to which colors are assigned according to the color theory in film. Subjective tests are carried out to check the correctness of the assumptions behind the adopted emotion model. For that purpose, a statistical analysis of the...
-
The Usage of the BP-Layers Stereo Matching Algorithm with the EBCA Camera Set
PublikacjaThis paper is concerned with applying a stereo matching algorithm called BP-Layers to a set of many cameras. BP Layers is designed for obtaining disparity maps from stereo cameras. The algorithm takes advantage of convolutional natural networks. This paper presents using this algorithm with a set called Equal Baseline Camera Array. This set consists of up to five cameras with one central camera and other ones aground it. Such a...
-
Speech Analytics Based on Machine Learning
PublikacjaIn this chapter, the process of speech data preparation for machine learning is discussed in detail. Examples of speech analytics methods applied to phonemes and allophones are shown. Further, an approach to automatic phoneme recognition involving optimized parametrization and a classifier belonging to machine learning algorithms is discussed. Feature vectors are built on the basis of descriptors coming from the music information...
-
Deep CNN based decision support system for detection and assessing the stage of diabetic retinopathy
PublikacjaThe diabetic retinopathy is a disease caused by long-standing diabetes. Lack of effective treatment can lead to vision impairment and even irreversible blindness. The disease can be diagnosed by examining digital color fundus photographs of retina. In this paper we propose deep learning approach to automated diabetic retinopathy screening. Deep convolutional neural networks (CNN) - the most popular kind of deep learning algorithms...
-
Data augmentation for improving deep learning in image classification problem
PublikacjaThese days deep learning is the fastest-growing field in the field of Machine Learning (ML) and Deep Neural Networks (DNN). Among many of DNN structures, the Convolutional Neural Networks (CNN) are currently the main tool used for the image analysis and classification purposes. Although great achievements and perspectives, deep neural networks and accompanying learning algorithms have some relevant challenges to tackle. In this...