Filtry
wszystkich: 511
-
Katalog
- Publikacje 425 wyników po odfiltrowaniu
- Czasopisma 7 wyników po odfiltrowaniu
- Konferencje 7 wyników po odfiltrowaniu
- Osoby 52 wyników po odfiltrowaniu
- Projekty 2 wyników po odfiltrowaniu
- Kursy Online 7 wyników po odfiltrowaniu
- Wydarzenia 2 wyników po odfiltrowaniu
- Dane Badawcze 9 wyników po odfiltrowaniu
Wyniki wyszukiwania dla: MEDICAL MACHINE LEARNING PROJECTS
-
Assessment Of the Relevance of Best Practices in The Development of Medical R&D Projects Based on Machine Learning
PublikacjaMachine learning has emerged as a fundamental tool for numerous endeavors within health informatics, bioinformatics, and medicine. However, novices among biomedical researchers and IT developers frequently lack the requisite experience to effectively execute a machine learning project, thereby increasing the likelihood of adopting erroneous practices that may result in common pitfalls or overly optimistic predictions. The paper...
-
Machine Learning and Electronic Noses for Medical Diagnostics
PublikacjaThe need for noninvasive, easy-to-use, and inexpensive methods for point-of-care diagnostics of a variety of ailments motivates researchers to develop methods for analyzing complex biological samples, in particular human breath, that could aid in screening and early diagnosis. There are hopes that electronic noses, that is, devices based on arrays of semiselective or nonselective chemical sensors, can fill this niche. Electronic...
-
Multimedia industrial and medical applications supported by machine learning
PublikacjaThis article outlines a keynote paper presented at the Intelligent DecisionTechnologies conference providing a part of the KES Multi-theme Conference “Smart Digital Futures” organized in Rome on June 14–16, 2023. It briefly discusses projects related to traffic control using developed intelligent traffic signs and diagnosing the health of wind turbine mechanisms and multimodal biometric authentication for banking branches to provide...
-
A Machine Learning Approach for Estimating Overtime Allocation in Software Development Projects
PublikacjaOvertime planning in software projects has traditionally been approached with search-based multi-objective optimization algorithms. However, the explicit solutions produced by these algorithms often lack applicability and acceptance in the software industry due to their disregard for project managers' intuitive knowledge. This study presents a machine learning model that learns the preferred overtime allocation patterns from solutions...
-
Process of Medical Dataset Construction for Machine Learning-Multifield Study and Guidelines
PublikacjaThe acquisition of high-quality data and annotations is essential for the training of efficient machine learning algorithms, while being an expensive and time-consuming process. Although the process of data processing and training and testing of machine learning models is well studied and considered in the literature, the actual procedures of obtaining data and their annotations in collaboration with physicians are in most cases...
-
Perception of Pathologists in Poland of Artificial Intelligence and Machine Learning in Medical Diagnosis—A Cross-Sectional Study
Publikacja -
Active Annotation in Evaluating the Credibility of Web-Based Medical Information: Guidelines for Creating Training Data Sets for Machine Learning
PublikacjaMethods Results Discussion References Abbreviations Copyright Abstract Background: The spread of false medical information on the web is rapidly accelerating. Establishing the credibility of web-based medical information has become a pressing necessity. Machine learning offers a solution that, when properly deployed, can be an effective tool in fighting medical misinformation on the web. Objective: The aim of this study is to...
-
Machine Learning Assisted Interactive Multi-objectives Optimization Framework: A Proposed Formulation and Method for Overtime Planning in Software Development Projects
PublikacjaMachine Learning Assisted Interactive Multi-objectives Optimization Framework: A Proposed Formulation and Method for Overtime Planning in Software Development Projects Hammed A. Mojeed & Rafal Szlapczynski Conference paper First Online: 14 September 2023 161 Accesses Part of the Lecture Notes in Computer Science book series (LNAI,volume 14125) Abstract Software development project requires proper planning to mitigate risk and...
-
MACHINE LEARNING
Czasopisma -
Foundations and Trends in Machine Learning
Czasopisma -
Machine Learning-Science and Technology
Czasopisma -
International Journal of Machine Learning and Cybernetics
Czasopisma -
International Journal of Machine Learning and Computing
Czasopisma -
Raw data of AuAg nanoalloy plasmon resonances used for machine learning method
Dane BadawczeRaw data used for machine learning process. UV-vis measurements of AuAg alloyed nanostructures created from thin films. Plasmonic band position dependence on fabrication parameters. Small presentation reviewing achieved structures and their properties.
-
Evaluation of Machine Learning Methods for the Experimental Classification and Clustering of Higher Education Institutions
PublikacjaHigher education institutions have a big impact on the future of skills supplied on the labour market. It means that depending on the changes in labour market, higher education institutions are making changes to fields of study or adding new ones to fulfil the demand on labour market. The significant changes on labour market caused by digital transformation, resulted in new jobs and new skills. Because of the necessity of computer...
-
JOURNAL OF MACHINE LEARNING RESEARCH
Czasopisma -
Machine Learning and Knowledge Extraction
Czasopisma -
Quantitative Risk Assessment in Construction Disputes Based on Machine Learning Tools
PublikacjaA high monetary value of the construction projects is one of the reasons of frequent disputes between a general contractor (GC) and a client. A construction site is a unique, one-time, and single-product factory with many parties involved and dependent on each other. The organizational dependencies and their complexity make any fault or mistake propagate and influence the final result (delays, cost overruns). The constant will...
-
COVID-19 severity forecast based on machine learning and complete blood count data
PublikacjaProper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose...
-
COVID-19 severity forecast based on machine learning and complete blood count data
PublikacjaProper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose...
-
Source code - AI models (MLM1-5 - series I-III - QNM opt)
Dane BadawczeSource code - AI models (MLM1-5 - series I-III - QNM opt) for the paper "Computational Complexity and Its Influence on Concrete Compressive Strength Prediction Capabilities of Machine Learning Models for Concrete Mix Design Support" accepted for publication.
-
Medical Image Segmentation Using Deep Semantic-based Methods: A Review of Techniques, Applications and Emerging Trends
PublikacjaSemantic-based segmentation (Semseg) methods play an essential part in medical imaging analysis to improve the diagnostic process. In Semseg technique, every pixel of an image is classified into an instance, where each class is corresponded by an instance. In particular, the semantic segmentation can be used by many medical experts in the domain of radiology, ophthalmologists, dermatologist, and image-guided radiotherapy. The authors...
-
Lessons learned from developing an Industry 4.0 mobile process management system supported by Artificial Intelligence
PublikacjaResearch, development and innovation (RDI) projects are undertaken in order to improve existing, or develop new, more efficient products and services. Moreover, the goal of innovation is to produce new knowledge through research, and disseminating it through education and training. In this line of thinking, this paper reports and discusses the lessons learned from the undertaken project, regarding three areas: machine learning...
-
DEEP CONVOLUTIONAL NEURAL NETWORKS AS A DECISION SUPPORT TOOL IN MEDICAL PROBLEMS – MALIGNANT MELANOMA CASE STUDY
PublikacjaThe paper presents utilization of one of the latest tool from the group of Machine learning techniques, namely Deep Convolutional Neural Networks (CNN), in process of decision making in selected medical problems. After the survey of the most successful applications of CNN in solving medical problems, the paper focuses on the very difficult problem of automatic analyses of the skin lesions. The authors propose the CNN structure...
-
THE ROLE OF INFERENCE IN MOBILE MEDICAL APPLICATION DESIGN
PublikacjaIn the early 21st century, artificial intelligence began to be used to process medical information. However, before this happened, predictive models used in healthcare could only consider a limited number of variables, and only in properly structured and organised medical data. Today, advanced tools based on machine learning techniques - which, using artificial neural networks, can explore extremely complex relationships - and...
-
C-reactive protein (CRP) evaluation in human urine using optical sensor supported by machine learning
PublikacjaThe rapid and sensitive indicator of inflammation in the human body is C-Reactive Protein (CRP). Determination of CRP level is important in medical diagnostics because, depending on that factor, it may indicate, e.g., the occurrence of inflammation of various origins, oncological, cardiovascular, bacterial or viral events. In this study, we describe an interferometric sensor able to detect the CRP level for distinguishing between...
-
Methodology for hospital design in architectural education
PublikacjaThe architecture of a hospital should be a response to strong user requirements. Recommendations on how to shape the environment of such facilities are highly complex, integrating guidelines from many fields of science. If contradictions between them exist, the designer is required to set priorities for spatial activities. This issue is particularly important during architectural education. The learning process should include projects...
-
RAGN-R: A multi-subject ensemble machine-learning method for estimating mechanical properties of advanced structural materials
PublikacjaThe utilization of advanced structural materials, such as preplaced aggregate concrete (PAC), fiber-reinforced concrete (FRC), and FRC beams has revolutionized the field of civil engineering. These materials exhibit enhanced mechanical properties compared to traditional construction materials, offering engineers unprecedented opportunities to optimize the design, construction, and performance of structures and infrastructures....
-
Medical Image Dataset Annotation Service (MIDAS)
PublikacjaMIDAS (Medical Image Dataset Annotation Service) is a custom-tailored tool for creating and managing datasets either for deep learning, as well as machine learning or any form of statistical research. The aim of the project is to provide one-fit-all platform for creating medical image datasets that could easily blend in hospital's workflow. In our work, we focus on the importance of medical data anonimization, discussing the...
-
Patryk Ziółkowski dr inż.
OsobyAdiunkt na Politechnice Gdańskiej. Brał udział w projektach międzynarodowych, w tym projektach dla Ministerstwa Transportu stanu Alabama (2015), jest także laureatem grantu Fundacji Kościuszkowskiej na prowadzanie badań w USA, który zrealizował w 2018 roku. Ekspert w dziedzinie sztucznej inteligencji. Jego główny obszar zainteresowań badawczych stanowi zastosowanie sztucznej inteligencji w Inżynierii Lądowej. Prowadzi projekty...
-
A Comprehensive Analysis of Deep Neural-Based Cerebral Microbleeds Detection System
PublikacjaMachine learning-based systems are gaining interest in the field of medicine, mostly in medical imaging and diagnosis. In this paper, we address the problem of automatic cerebral microbleeds (CMB) detection in magnetic resonance images. It is challenging due to difficulty in distinguishing a true CMB from its mimics, however, if successfully solved it would streamline the radiologists work. To deal with this complex three-dimensional...
-
Precise Identification of Different Cervical Intraepithelial Neoplasia (CIN) Stages, Using Biomedical Engineering Combined with Data Mining and Machine Learning
PublikacjaCervical cancer (CC) is one of the most common female cancers worldwide. It remains a significant global health challenge, particularly affecting women in diverse regions. The pivotal role of human papillomavirus (HPV) infection in cervical carcinogenesis underscores the critical importance of diagnostic strategies targeting both HPV infection and cervical...
-
Adam Władziński
OsobyAdam Władziński, doktorant na Politechnice Gdańskiej, specjalizuje się w inżynierii biomedycznej, skupiając się na uczeniu maszynowym do przetwarzania obrazów z druku 3D układów pomiarowych i tkanek biologicznych, a także na komercyjnym zastosowaniu technologii blockchain. Posiadając wykształcenie z dziedziny elektroniki na Wydziale Elektroniki, Telekomunikacji i Informatyki (ETI), praca magisterska Adama Władzińskiego koncentrowała...
-
Book Review
PublikacjaActing over the last three decades as an Editor and Associate Editor for a number of international journals in the general area of cybernetics and AI, as well as a Chair and Co-Chair of numerous conferences in this field, I have had the exciting opportunity to closely witness and to be actively engaged in the stimulating research area of machine learning and its important augmentation with deep learning techniques and technologies. From...
-
Data augmentation for improving deep learning in image classification problem
PublikacjaThese days deep learning is the fastest-growing field in the field of Machine Learning (ML) and Deep Neural Networks (DNN). Among many of DNN structures, the Convolutional Neural Networks (CNN) are currently the main tool used for the image analysis and classification purposes. Although great achievements and perspectives, deep neural networks and accompanying learning algorithms have some relevant challenges to tackle. In this...
-
Julita Wasilczuk dr hab.
OsobyUrodzona 5 kwietnia 1965 roku w Gdańsku. W latach 1987–1991 odbyła studia na Wydziale Ekonomiki Transportu Uniwersytetu Gdańskiego (obecnie Wydział Ekonomii). Od 1993 roku zatrudniona na nowo utworzonym Wydziale Zarządzania i Ekonomii, Politechniki Gdańskiej, na stanowisku asystenta. W 1997 roku uzyskała stopień doktora nauk ekonomicznych na WZiE, a w 2006 doktora habilitowanego nauk ekonomicznych w dyscyplinie nauki o zarządzaniu,...
-
Alhassan Ali Ahmed
OsobyAlhassan Ali Ahmed BSc of pharmacy, MSc in Bioinformatics and Biotechnology, and currently doing his PhD in Bioinformatics and Machine Learning. Alhassan has considerable experience in the pharmaceutical industry as he worked before in different positions such as; Community pharmacist, Medical advisor, Antibiotics production specialist, Quality assurance specialist, Key account manager for Immunotherapeutic medications, and currently,...
-
RS-REMD Protein-GAG Interaction Dataset in CHARMM36m
Dane BadawczeThe dataset includes input files, simulation parameters, and analysis scripts used in Repulsive Scaling Replica Exchange Molecular Dynamics (RS-REMD) simulations to study protein–glycosaminoglycan (GAG) interactions. In this study, the RS-REMD method was applied for molecular docking of GAGs and carbohydrates to selected protein targets. Molecular Mechanics...
-
Arsalan Muhammad Soomar Doctoral Student
OsobyHi, I'm Arsalan Muhammad Soomar, an Electrical Engineer. I received my Master's and Bachelor's Degree in the field of Electrical Engineering from Mehran University of Engineering and Technology, Jamshoro, Sindh, Pakistan. Currently enrolled as a Doctoral student at the Gdansk University of Technology, Gdansk, Poland. Also worked in Yellowlite. INC, Ohio as a Solar Design Engineer. HEADLINE Currently Enrolled as a Doctoral...
-
Machine learning for PhD students
Kursy OnlineAn introductory course in machine learning for PhD students from Department of Geotechnical and Hydraulic Engineering
-
Unsupervised Learning for Biomechanical Data Using Self-organising Maps, an Approach for Temporomandibular Joint Analysis
PublikacjaWe proposed to apply a specific machine learning technique called Self-Organising Maps (SOM) to identify similarities in the performance of muscles around human temporomandibular joint (TMJ). The performance was assessed by measuring muscle activation with the use of surface electromyography (sEMG). SOM algorithm used in the study was able to find clusters of data in sEMG test results. The SOM analysis was based on processed sEMG...
-
Meeting Requirements Imposed by Secure Software Development Standards and Still Remaining Agile
PublikacjaThe paper introduces the AgileSafe method of selecting agile practices for software development projects that are constrained by assurance requirements resulting from safety and/or security related standards. Such requirements are represented by argumentation templates which explain how the evidence collected during agile practices implementation will support the conformity with the requirements. Application of the method is demonstrated...
-
New methods for assessment and stimulation of non-communicative patients employing advanced multimodal HCI . Nowe metody oceny i stymulacji pacjentów niekomunikatywnych z wykorzystaniem zaawansowanych interfejsów multimodalnych człowiek-komputer
PublikacjaIn most cases of patients with locomotor system damage it is possible to find a solution to the medical problems originating from the injury. However, it is much more difficult to prevent cognitive and emotional impairments. Therefore, we believe that the technological support of therapists working with such patients on an everyday basis may be essential. We have acquired experience in designing and providing diagnostic and therapeutic...
-
Active IR-Thermal Imaging in Medicine
PublikacjaIn this paper we summarize results of several research projects devoted to development of new diagnostic methods and procedures based on quantitative infrared thermography in medical applications. First, basics of active dynamic thermography are presented. Described are both, instrumentation and software comprising measurement procedures including collection of series of IR-images after external excitation, data treatment with...
-
Art and Healthcare - Healing Potential of Artistic Interventions in Medical Settings
PublikacjaThe stereotype of a machine for healing seems to be well rooted in common thinking and social perception of hospital buildings. The technological aspect of healthcare architecture has been influenced for several years by three major factors. The first is linked to the necessity of providing safety and security in the environment of elevated epidemiological risk. The second concerns the need for incorporating advanced technology...
-
University Students’ Research on Artificial Intelligence and Knowledge Management. A Review and Report of Multi-case Studies
PublikacjaLeading technologies are very attractive for students preparing their theses as the completion of their studies. Such an orientation of students connected with professional experiences seems to be a crucial motivator in the research in the management and business areas where these technologies condition the development of professional activities. The goal of the paper is the analysis of students’ thesis topics defended in the last...
-
TensorHive: Management of Exclusive GPU Access for Distributed Machine Learning Workloads
PublikacjaTensorHive is a tool for organizing work of research and engineering teams that use servers with GPUs for machine learning workloads. In a comprehensive web interface, it supports reservation of GPUs for exclusive usage, hardware monitoring, as well as configuring, executing and queuing distributed computational jobs. Focusing on easy installation and simple configuration, the tool automatically detects the available computing...
-
A Review on Machine Learning Deployment Patterns and Key Features in the Prediction of Preeclampsia
PublikacjaPrevious reviews have investigated machine learning (ML) models used to predict the risk of developing preeclampsia. However, they have not addressed the intended deployment of these models throughout pregnancy, nor have they detailed feature performance. This study aims to provide an overview of existing ML models and their intended deployment patterns and performance, along with identified features of high importance. This review...
-
Speech Analytics Based on Machine Learning
PublikacjaIn this chapter, the process of speech data preparation for machine learning is discussed in detail. Examples of speech analytics methods applied to phonemes and allophones are shown. Further, an approach to automatic phoneme recognition involving optimized parametrization and a classifier belonging to machine learning algorithms is discussed. Feature vectors are built on the basis of descriptors coming from the music information...
-
The use and development of e-learning systems in educational projects
PublikacjaThe article introduces the problem of usage and development of e-learning systems among Polish universities. Easily accessible internet and IT development led to changes in education. Through the use of IT tools, e-learning has become an increasingly popular form of education. Presently, majority of Polish universities use an e-learning system of their own choosing designed to support the didactic processes. The goal of the article...