Filtry
wszystkich: 39
Wyniki wyszukiwania dla: ORTHOTROPIC MATERIAL
-
Estimation of fracture toughness and shear yield stress of orthotropic materials in cutting with rotating tools
PublikacjaThe cutting force is an energetic effect of splitting material, and might be considered from a point of view of modern fracture mechanics. Forecasting of the shear plane angle in cutting broaden possibilities for modelling of the cutting process even for thin uncut chips. Such mathematical model has been developed here for description of the orthotropic materials’ cutting on the base of fracture theory, and includes work of separation...
-
Behaviour of orthotropic surgical implant in hernia repair due to the material orientation and abdomen surface deformation
Publikacjarelation to the different range of typical deformations observed in different directions and zones of abdomen surface due to the patients’ life activities, has a significant influence on the extreme junction forces in the mesh–tissue connections and hence the repair persistence. The finite element model of the orthotropic implant was developed, and the junction forces in the connections of tissue and mesh were studied. The kinematical...
-
On Wrinkling in Sandwich Panels with an Orthotropic Core
PublikacjaThis paper deals with the local loss of stability (wrinkling) problem of a thin facing of a sandwich panel. Classical solutions to the problem of facing instability resting on a homogeneous and isotropic substructure (a core) are compared. The relations between strain energy components associated with different forms of core deformations are discussed. Next, a new solution for the orthotropic core is presented in detail, which...
-
Sensitivity analysis in design process of sandwich U-shaped composite footbridge
PublikacjaThe structure of the sandwich composite footbridge of a 14 metre span length and U-shaped cross-section was analysed. Sensitivity analysis was performed to support the design process of this innovative object. Linear discrete sensitivity analysis was performed by means of finite element method. The influence of vari-ation of several design variables i.e. thicknesses of inner and outer laminates on the mid-span deflection, as-sumed...
-
Modeling and Strength Calculations of Parts Made Using 3D Printing Technology and Mounted in a Custom-Made Lower Limb Exoskeleton
PublikacjaThis study is focused on the application of 3D-printed elements and conventional elements to create a prototype of a custom-made exoskeleton for lower limb rehabilitation. The 3D-printed elements were produced by using Fused Deposition Modeling technology and acrylonitrile butadiene styrene (ABS) material. The scope of this work involved the design and construction of an exoskeleton, experimental testing of the ABS material and...
-
Numerical analysis of the carpentry joints applied in the traditional wooden structures
PublikacjaThe paper concerns the numerical analysis of the carpentry joints made from spruce wood. The material parameters of the wood have been calculated on the basis of nine independent material constants (an orthotropic material). The contact zone between the individual elements of the connection has been determined using Contact Tables in the MSC.Marc software. Five types of carpentry joints have been analyzed. The main aim of the research...
-
Strength parameters of masonry walls in modelling historic constructions
PublikacjaThe paper presents the determination of the basic material properties of a historic brickwork. Experimental studies were used to identify the basic material properties of bricks. The mechanical properties of the masonry, as an orthotropic homogenized material, were calculated. Then, numerical simulations using the Finite Element Method (FEM) were performed to verify the experimental outcomes. Macromodels with element sizes of 40,...
-
Membrane model of human abdominal wall. Simulations vs. in vivo measurements
PublikacjaThe study presents a methodology of defining a numerical model of human abdominal wall based on the experimentally registered data of the abdomen geometry due to variations of the intraabdominal pressure. The abdominal wall is modelled here as a simple homogeneous membrane structure made of linear orthotropic material The displacements registered during the increase of pressure are compared with the re-sults of the model static...
-
Mechanical properties of Precontraint 1202S coated fabric under biaxial tensile test with different load ratios
PublikacjaThe paper describes a method of laboratory tests necessary for identifying the mechanical properties of polyester coated fabrics named Precontraint 1202S with PVDF surface treatment. Two sets of initial material parameters for dense net model and orthotropic model are specified. Material parameters for Precontraint 1202S coated fabric are specified on the basis of the biaxial tensile tests for different load ratios. In order to...
-
Nonlinear FEM analysis of irregular shells composed of fiber metal laminates
PublikacjaThe paper deals with the analysis of failure initiation in shells made of Fiber Metal Laminates (FML). The elas-tic material law for orthotropic lamina is stated accounting for asymmetric in-plane stress and strain measures. The asymmetry results from the employed general nonlinear 6-field shell theory where the generalized dis-placements involve the translation and the proper rotation field. The novelty of the presented results...
-
Laminated plates and shells - first ply failure analysis within 6-parameter shell theory
PublikacjaThis work describes Tsai-Wu and Hashin criteria modifications, dictated by nonlinear 6-parameter shell theory with asymmetric strain measures and drilling rotation. The material law is based on standard orthotropic elastic constants for a non-polar continuum, under plane state of stress. First ply failure loads of cylindrical panel subjected to pressure and flat compressed plate are estimated by means of Finite Element Analysis....
-
Mechanical behaviour of knit synthetic mesh used in hernia surgery
PublikacjaPurpose: There is a discussion in literature concerning mechanical properties and modelling of surgical meshes. An important feature of elastic modulus dependency on load history is taken into account in this paper, as implants are subjected to variable loading during human activity. The example of DynaMesh®-IPOM surgical implant is studied. Methods: The analysis is based on failure tension tests and cyclic loading and unloading...
-
Mechanical behaviour of the implant used in human hernia repair under physiological loads
PublikacjaIn laparoscopic operations of abdominal hernias some recurrences still take place, even when applying a surgical mesh. This is usually caused by a failure of the connection between the tissue and the implant. The study deals with the influence of an implant’s orientation on forces in joints, which connect the mesh to human tissues. In the paper, the implant is modelled as a membrane structure within framework of the Finite Element...
-
A procedure for the identification of effective mechanical parameters of additively manufactured elements using integrated ultrasonic bulk and guided waves
PublikacjaThe subject of the current work was a simple but robust novel two-stage procedure for the non-destructive determination of effective elastic constants using ultrasonic wave propagation. First, ultrasonic bulk wave velocities measured on cubic samples were used to calculate most of the elements of the stiffness matrix. Secondly, the remaining elements were determined using the dispersion curves of elastic guided waves measured on...
-
Validation of lumbar spine finite element model
Dane BadawczeThe functional biomechanics of the lumbar spine have been better understood by finite element method (FEM) simulations. However, there are still areas where the behavior of soft tissues can be better modeled or described in a different way. The purpose of this research is to develop and validate a lumbar spine section intended for biomechanical research....
-
Cutting model parameters from frame sawing of natural and impregnated Scots pine (Pinus sylvestris L.)
PublikacjaIn this paper, absolute and density normalized cutting model parameters of natural and impregnated Scots pine (Pinus sylvestris L.) are shown and a method for the calculation of their corresponding material properties in the principal material directions of wood is presented. The parameters were determined from measurements of cutting power on a sash gang saw, and are in detail the fracture toughness and the shear yield strength...
-
NUMERICAL MODELLING AND EXPERIMENTATION OF HISTORICAL CARPENTRY CORNER LOG JOINTS
PublikacjaThe main purpose of this research is to determine the stress distributions on the contact surfaces between the logs of the historical carpentry corner joints. The additional purpose is to compare the stress distribution for four different boundary conditions in the case of dry and wet pine wood. The paper presents the results of numerical analysis of the shortcorner dovetail connection and the saddle notch corner joint, which are...
-
Application of linear buckling sensitivity analysis to economic design of cylindrical steel silos composed of corrugated sheets and columns
PublikacjaThe paper deals with global stability of steel cylindrical silos composed of corrugated walls and vertical columns with loads imposed by a bulk solid following Eurocode 1. The optimum silo design with respect to the steel weight was based on a sensitivity analysis method. The changes of silo column profiles at each design step were performed by means of influence lines for the buckling load factor due to the unit column bending...
-
CHARACTERIZATION STUDY ON MECHANICAL PROPERTIES OF POLYESTER COATED FABRIC
PublikacjaThe scope of the paper is to determine the mechanical properties of the Precontraint 1302 polyester coated fabric under uniaxial and biaxial tensile tests. The results are compared for Precontraint 1302 fabric and other types of coated fabrics. The author applied an orthotropic model and a dense net model to reflect the polyester coated fabric performance under uniaxial and biaxial tensile tests. Material parameters are specified...
-
Local buckling of composite channel columns
PublikacjaThe investigation concerns local buckling of compressed flanges of axially compressed composite channel columns. Cooperation of the member flange and web is taken into account here. The buckling mode of the member flange is defined by rotation angle a flange about the line of its connection with the web. The channel column under investigation is made of unidirectional fibre-reinforced laminate. Two approaches to member orthotropic...
-
A newly-developed model for predicting cutting power during wood sawing with circular saw blades
PublikacjaIn the classical approach, cutting forces and cutting power in sawing processes of orthotropic materials such as wood are generally calculated on the basis of the specific cutting resistance kc (cutting force per unit area of cut). For every type of sawing kinematics (frame saws, band saws and circular sawing machines) different empirical values of specific cutting resistance kc have to be applied. It should be emphasised that...
-
Historical carpentry corner log joints—Numerical analysis within stochastic framework
PublikacjaThe paper presents the results of numerical analysis performed on historical, traditional carpentry corner logjoints of two basic topologies: the short-corner dovetail connection and the saddle notch connection. These types of carpentry joints are commonly used in currently preserved objects of wooden architecture. All connections have been modelled in pinewood, which has been defined in the Finite Element software MSC.Marc/Mentat...
-
Development and validation of lumbar spine finite element model
PublikacjaThe functional biomechanics of the lumbar spine have been better understood by finite element method (FEM) simulations. However, there are still areas where the behavior of soft tissues can be better modeled or described in a different way. The purpose of this research is to develop and validate a lumbar spine section intended for biomechanical research. A FE model of the 50th percentile adult male (AM) Total Human Model for Safety...
-
IMPLANT USED IN HERNIA REPAIR UNDER PHYSIOLOGICAL MOVEMENTS OF HUMAN ABDOMEN
PublikacjaThe study deals with the mechanical behaviour of implant used in repair of abdominal hernia. The influence of orientation of the orthotropic implants in different areas of abdominal wall is studied.
-
Numerical simulation of laminate composite specimens failure
PublikacjaThis work presents some numerical results concerning simulation of failure of laminate composite specimens. In the article two tests to determine ultimate strength in an orthotropic layer, are considered: tension (TT1) and compression (TC1) test. The outcome is compared with experimental data provided by [9,10].
-
Distortional buckling of composite thin-walled columns of a box-type cross section with diaphragms
PublikacjaDistortional buckling of axially compressed columns of box-like composite cross sections with andwithout internal diaphragms is investigated in the framework of one-dimensional theory. The channel membersare composed of unidirectional fibre-reinforced laminate. Two approaches to the member orthotropic materialare applied: homogenization based on the theory of mixture and periodicity cells, and homogenization basedon the Voigt–Reuss...
-
Buckling Analysis of a Micro Composite Plate with Nano Coating Based on the Modified Couple Stress Theory
PublikacjaThe present study investigates the buckling of a thick sandwich plate under the biaxial non-uniform compression using the modified couple stress theory with various boundary conditions. For this purpose, the top and bottom faces are orthotropic graphene sheets and for the central core the isotropic soft materials are investigated. The simplified first order shear deformation theory (S-FSDT) is employed and the governing differential...
-
Buckling of simplified models of silo with corrugated walls and vertical stiffeners
PublikacjaThe paper deals with buckling of cylindrical silos composed of corrugated sheets and vertical stiffeners (columns). Comprehensive finite element analyses were carried out for a perfect silo by means of a linear buckling approach. Corrugated walls were simulated as an equivalent orthotropic shell and vertical thin-walled columns as beam elements. Calculations for perfect silos with different numbers of columns made it possible to...
-
Thermal Buckling Analysis of Circular Bilayer Graphene sheets Resting on an Elastic Matrix Based on Nonlocal Continuum Mechanics
PublikacjaIn this article, the thermal buckling behavior of orthotropic circular bilayer graphene sheets embedded in the Winkler–Pasternak elastic medium is scrutinized. Using the nonlocal elasticity theory, the bilayer graphene sheets are modeled as a nonlocal double–layered plate that contains small scale effects and van der Waals (vdW) interaction forces. The vdW interaction forces between the layers are simulated as a set of linear springs...
-
A PRELIMINARY STUDY ON THE OPTIMAL CHOICE OF AN IMPLANT AND ITS ORIENTATION IN VENTRAL HERNIA REPAIR
PublikacjaThis paper addresses the problem of ventral hernia repair. The main goals are to find an optimal surgical mesh for hernia repair and to define its optimal orientation in the abdominal wall to minimise the maximum force at the tissue-implant juncture. The optimal mesh is chosen from a set of orthotropic meshes with different stiffness ratios for typical hernia placement in the abdominal area. The implant is subjected to an anisotropic...
-
Influence of sheet/purlin fasteners spacing on shear flexibility of the diaphragm
PublikacjaThe paper presents the influence of sheet/purlin fasteners location (in reference to trapezoidal profile cross section) on shear flexibility of the cladding acting as a diaphragm. Analytical procedures were presented and their limitations were discussed. Next, selected schemes of fasteners location, known from engineering practice, but not included in European codes and recommendations, were analysed numerically in order to observe...
-
2-D constitutive equations for orthotropic Cosserat type laminated shells in finite element analysis
PublikacjaWe propose 2-D Cosserat type orthotropic constitutive equations for laminated shells for the purpose of initial failure estimation in a laminate layer. We use nonlinear 6-parameter shell theory with asymmetric membrane strain measures and Cosserat kinematics as the framework. This theory is specially dedicated to the analysis of irregular shells, inter alia, with orthogonal intersections, since it takes into account the drilling...
-
Large deformation modelling of CPT probing in soft soil—pore water pressure analysis
PublikacjaThis paper presents the results of finite element modelling with Updated Lagrangian formulation of the Cone Penetration Test in soft soil deposit located in Jazowa, Poland. The numerical calculations are carried out for homogenous, normally consolidated, organic soil layer. The Modified Cam Clay constitutive model for soft soil and Coulomb model for interface are used. The study compares the registered pore water pressure distributions...
-
Displacement measurements during load testing of railway arch bridge
PublikacjaThe paper discusses issues concerning load tests carried out on a twin-track, arch railway bridge over the Martwa Wisla river in Gdansk. Currently, it is the bridge with the longest span in its class in Poland. The load-bearing structure consists of three no-hinge arches and an orthotropic deck suspended from them. The studies of the structure assumed the performing of static and dynamic tests. The paper presents the method for...
-
Influence of fasteners and connections flexibility on deflections of steel building including the stressed skin effect
PublikacjaThe paper presents the analysis of the influence of fasteners and connections flexibility on displacements of symmetrical single-bay pitched-roof steel building, including trapezoidal cladding acting as a diaphragm. The purpose of the article was to compare numerical models with and without taking into consideration fasteners and connections flexibility in order to observe the differences in transverse stiffness of the building...
-
Bending and buckling formulation of graphene sheets based on nonlocal simple first-order shear deformation theory
PublikacjaThis paper presents a formulation based on simple first-order shear deformation theory (S-FSDT) for large deflection and buckling of orthotropic single-layered graphene sheets (SLGSs). The S-FSDT has many advantages compared to the classical plate theory (CPT) and conventional FSDT such as needless of shear correction factor, containing less number of unknowns than the existing FSDT and strong similarities with the CPT. Governing...
-
A study on diagnosing both isotropic and orthotropic, intentionally damaged laminates
PublikacjaBeing the most detrimental mode in laminated structures, delamination initially degrades local structural strength, and lastly causes global structural failure, thus necessitating delamination identification at its incipient stages. For identification purposes, a comprehensive numerical and experimental study on delamination within both the laminated isotropic acrylic-glass and orthotropic epoxyglass plates is presented. As the...
-
Non-linear static stability of bi-layer carbon nanosheets resting on an elastic matrix under various types of in-plane shearing loads in thermo-elasticity using nonlocal continuum
PublikacjaIn this research, the shear and thermal buckling of bi-layer rectangular orthotropic carbon nanosheets embedded on an elastic matrix using the nonlocal elasticity theory and non-linear strains of Von-Karman was studied. The bi-layer carbon sheets were modeled as a double-layered plate, and van der Waals forces between layers were considered. The governing equations and boundary conditions were obtained using the first order shear...
-
The effective elastic properties of human trabecular bone may be approximated using micro-finite element analyses of embedded volume elements.
PublikacjaBoundary conditions (BCs) and sample size affect the measured elastic properties of cancellous bone. Samples too small to be representative appear stiffer under kinematic uniform BCs (KUBCs) than under periodicity-compatible mixed uniform BCs (PMUBCs). To avoid those effects, we propose to determine the effective properties of trabecular bone using an embedded configuration. Cubic samples of various sizes (2.63, 5.29, 7.96, 10.58...