Wyniki wyszukiwania dla: batch normalization, transfer learning, dropout
-
Selected Technical Issues of Deep Neural Networks for Image Classification Purposes
PublikacjaIn recent years, deep learning and especially Deep Neural Networks (DNN) have obtained amazing performance on a variety of problems, in particular in classification or pattern recognition. Among many kinds of DNNs, the Convolutional Neural Networks (CNN) are most commonly used. However, due to their complexity, there are many problems related but not limited to optimizing network parameters, avoiding overfitting and ensuring good...
-
Deep Learning: A Case Study for Image Recognition Using Transfer Learning
PublikacjaDeep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...
-
Application of a hybrid mechanistic/machine learning model for prediction of nitrous oxide (N2O) production in a nitrifying sequencing batch reactor
PublikacjaNitrous oxide (N2O) is a key parameter for evaluating the greenhouse gas emissions from wastewater treatment plants. In this study, a new method for predicting liquid N2O production during nitrification was developed based on a mechanistic model and machine learning (ML) algorithm. The mechanistic model was first used for simulation of two 15-day experimental trials in a nitrifying sequencing batch reactor. Then, model predictions...
-
Transfer learning in imagined speech EEG-based BCIs
PublikacjaThe Brain–Computer Interfaces (BCI) based on electroencephalograms (EEG) are systems which aim is to provide a communication channel to any person with a computer, initially it was proposed to aid people with disabilities, but actually wider applications have been proposed. These devices allow to send messages or to control devices using the brain signals. There are different neuro-paradigms which evoke brain signals of interest...
-
Generation of microbial colonies dataset with deep learning style transfer
Publikacja -
Food Classification from Images Using a Neural Network Based Approach with NVIDIA Volta and Pascal GPUs
PublikacjaIn the paper we investigate the problem of food classification from images, for the Food-101 dataset extended with 31 additional food classes from Polish cuisine. We adopted transfer learning and firstly measured training times for models such as MobileNet, MobileNetV2, ResNet50, ResNet50V2, ResNet101, ResNet101V2, InceptionV3, InceptionResNetV2, Xception, NasNetMobile and DenseNet, for systems with NVIDIA Tesla V100 (Volta) and...
-
Categorization of emotions in dog behavior based on the deep neural network
PublikacjaThe aim of this article is to present a neural system based on stock architecture for recognizing emotional behavior in dogs. Our considerations are inspired by the original work of Franzoni et al. on recognizing dog emotions. An appropriate set of photographic data has been compiled taking into account five classes of emotional behavior in dogs of one breed, including joy, anger, licking, yawning, and sleeping. Focusing on a particular...
-
INFLUENCE OF DATA NORMALIZATION ON THE EFFECTIVENESS OF NEURAL NETWORKS APPLIED TO CLASSIFICATION OF PAVEMENT CONDITIONS – CASE STUDY
PublikacjaIn recent years automatic classification employing machine learning seems to be in high demand for tele-informatic-based solutions. An example of such solutions are intelligent transportation systems (ITS), in which various factors are taken into account. The subject of the study presented is the impact of data pre-processing and normalization on the accuracy and training effectiveness of artificial neural networks in the case...
-
Self-Supervised Learning to Increase the Performance of Skin Lesion Classification
PublikacjaTo successfully train a deep neural network, a large amount of human-labeled data is required. Unfortunately, in many areas, collecting and labeling data is a difficult and tedious task. Several ways have been developed to mitigate the problem associated with the shortage of data, the most common of which is transfer learning. However, in many cases, the use of transfer learning as the only remedy is insufficient. In this study,...
-
Assessment of student language skills in an e-learning environment
PublikacjaThis article presents the role of various assessment structures that can be used in a VLE. e-Learning language courses offer tutors a wide range of traditional and computer-generated formative and summative assessment procedures and tools. They help to evaluate each student’s progress, monitor their activities and provide varied support, which comes from the tutor, the course structure and materials as well as other participants....
-
Using Long-Short term Memory networks with Genetic Algorithm to predict engine condition
PublikacjaPredictive maintenance (PdM) is a type of approach for maintenance processes, allowing maintenance actions to be managed depending on the machine's current condition. Maintenance is therefore carried out before failures occur. The approach doesn’t only help avoid abrupt failures but also helps lower maintenance cost and provides possibilities to manufacturers to manage maintenance budgets in a more efficient way. A new deep neural...
-
Benchmarking Deep Neural Network Training Using Multi- and Many-Core Processors
PublikacjaIn the paper we provide thorough benchmarking of deep neural network (DNN) training on modern multi- and many-core Intel processors in order to assess performance differences for various deep learning as well as parallel computing parameters. We present performance of DNN training for Alexnet, Googlenet, Googlenet_v2 as well as Resnet_50 for various engines used by the deep learning framework, for various batch sizes. Furthermore,...
-
Performance assessment of OpenMP constructs and benchmarks using modern compilers and multi-core CPUs
PublikacjaConsidering ongoing developments of both modern CPUs, especially in the context of increasing numbers of cores, cache memory and architectures as well as compilers there is a constant need for benchmarking representative and frequently run workloads. The key metric is speed-up as the computational power of modern CPUs stems mainly from using multiple cores. In this paper, we show and discuss results from running codes such as:...
-
Deep Learning
PublikacjaDeep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...
-
Ewa Kozłowska mgr inż.
OsobyEwa Kozłowska is a PhD student at Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials Engineering and Bonding. She has graduated Mechanical-Medical Engineering, interacademic field of study run cooperatively by Gdańsk University of Technology and Medical University of Gdańsk, Poland. She has started her adventure with e-learning in May 2015 by volunteering in SP4CE ERASMUS+ project and taking...
-
Data augmentation for improving deep learning in image classification problem
PublikacjaThese days deep learning is the fastest-growing field in the field of Machine Learning (ML) and Deep Neural Networks (DNN). Among many of DNN structures, the Convolutional Neural Networks (CNN) are currently the main tool used for the image analysis and classification purposes. Although great achievements and perspectives, deep neural networks and accompanying learning algorithms have some relevant challenges to tackle. In this...
-
Social learning in cluster initiatives
PublikacjaPurpose – The purpose of the paper is to portray social learning in cluster initiatives (CIs), namely: 1) to explore, with the lens of the communities of practice (CoPs) theory, in what ways social learning occurs in CIs; 2) to discover how various CoPs emerge and evolve in CIs to facilitate a collective journey in their learning process. Subsequently, the authors address the research questions: In what ways does social learning...
-
Musical Instrument Tagging Using Data Augmentation and Effective Noisy Data Processing
PublikacjaDeveloping signal processing methods to extract information automatically has potential in several applications, for example searching for multimedia based on its audio content, making context-aware mobile applications (e.g., tuning apps), or pre-processing for an automatic mixing system. However, the last-mentioned application needs a significant amount of research to reliably recognize real musical instruments in recordings....
-
The Knowledge Transfer From Headquarter to Local Subsidiaries Through Expatriates - Local Employees’ Perspective
PublikacjaBackground. Knowledge transfer between the HQ and subsidiary has recently been targets of increasing research interest. However, the role of expatriate managers and local staff perspective on this process has not been examined enough. Research aims. This paper has two main objectives: first to develop a conceptual framework (model) of knowledge transfer between the headquarters and local subsidiary, and second to empirically evaluate...
-
MP3vec: A Reusable Machine-Constructed Feature Representation for Protein Sequences
Publikacja—Machine Learning (ML) methods have been used with varying degrees of success on protein prediction tasks, with two inherent limitations. First, prediction performance often depends upon the features extracted from the proteins. Second, experimental data may be insufficient to construct reliable ML models. Here we introduce MP3vec, a transferable representation for protein sequences that is designed to be used specifically for sequence-to-sequence...
-
Anaerobic consortia mediate Mn(IV)-dependent anaerobic oxidation of methane
PublikacjaManganese-dependent anaerobic oxidation of methane (Mn-AOM) is a major methane sink and vital to mitigating global warming. However, it is difficult for microorganisms to mediate electron transfer between the hardly dissolved CH4 and insoluble Mn(IV) minerals, leading to poor understanding of species mediating Mn-AOM. This study successfully enriched an anaerobic consortium mediating AOM driven by Mn-dependent respiratory growth,...
-
Deep learning for ultra-fast and high precision screening of energy materials
PublikacjaSemiconductor materials for energy storage are the core and foundation of modern information society and play important roles in photovoltaic system, integrated circuit, spacecraft technology, lighting applications, and other fields. Unfortunately, due to the long experiment period and high calculation cost, the high-precision band gap (the basic characteristic parameter) of semiconductor is difficult to obtain, which hinders the...
-
Active Annotation in Evaluating the Credibility of Web-Based Medical Information: Guidelines for Creating Training Data Sets for Machine Learning
PublikacjaMethods Results Discussion References Abbreviations Copyright Abstract Background: The spread of false medical information on the web is rapidly accelerating. Establishing the credibility of web-based medical information has become a pressing necessity. Machine learning offers a solution that, when properly deployed, can be an effective tool in fighting medical misinformation on the web. Objective: The aim of this study is to...
-
Effect of Flow Normalization in Micro-Pin-Finned Heat Sink: Numerical Study
PublikacjaThe micro-pin-fin heat sink (MPFHS) is widely employed for the heat transfer enhancement of microchannel heat sinks. In the current paper, the effect of flow normalization on the thermohydraulic performance of micro-pin-finned heat sinks is studied numerically. Two geometries of MPFHSs, the conventional design micro-pin-fin heat sink (CD-MPFHS) with a uniform-width micro pin fin and the proposed design micro-pin-fin heat sink (PD-MPFHS)...
-
Two-Step Model Based Adaptive Controller for Dissolved Oxygen Control in Sequencing Wastewater Batch Reactor
PublikacjaDissolved Oxygen (DO) concentration is a crucial parameter for efficient operation of biological processes taking place in the activated sludge Wastewater Treatment Plant (WWTP). High-quality DO control is difficult to achieve because of complex nonlinear behavior of the plant and substantial influent disturbances. A method to improve the Direct Model Reference Adaptive Control (DMRAC) technology in application to DO tracking for...
-
Feature Weighted Attention-Bidirectional Long Short Term Memory Model for Change Detection in Remote Sensing Images
PublikacjaIn remote sensing images, change detection (CD) is required in many applications, such as: resource management, urban expansion research, land management, and disaster assessment. Various deep learning-based methods were applied to satellite image analysis for change detection, yet many of them have limitations, including the overfitting problem. This research proposes the Feature Weighted Attention (FWA) in Bidirectional Long...
-
Model-Based Adaptive Machine Learning Approach in Concrete Mix Design
PublikacjaConcrete mix design is one of the most critical issues in concrete technology. This process aims to create a concrete mix which helps deliver concrete with desired features and quality. Contemporary requirements for concrete concern not only its structural properties, but also increasingly its production process and environmental friendliness, forcing concrete producers to use both chemically and technologically complex concrete...
-
Modeling sequencing batch reactor operational conditions depending on oxygen concentration
PublikacjaSequencing batch reactors (SBR) can be used as a fill-and draw activated sludge system for wastewater treatment with considerable operating flexibility and the possibility to conduct experiments under standard conditions and extreme case scenarios. Mathematical modeling and computer simulations provide an opportunity to implement existing wastewater processes in modeling software and evaluate different modifications at low costs...
-
The impact of the AC922 Architecture on Performance of Deep Neural Network Training
PublikacjaPractical deep learning applications require more and more computing power. New computing architectures emerge, specifically designed for the artificial intelligence applications, including the IBM Power System AC922. In this paper we confront an AC922 (8335-GTG) server equipped with 4 NVIDIA Volta V100 GPUs with selected deep neural network training applications, including four convolutional and one recurrent model. We report...
-
Attention-Based Deep Learning System for Classification of Breast Lesions—Multimodal, Weakly Supervised Approach
PublikacjaBreast cancer is the most frequent female cancer, with a considerable disease burden and high mortality. Early diagnosis with screening mammography might be facilitated by automated systems supported by deep learning artificial intelligence. We propose a model based on a weakly supervised Clustering-constrained Attention Multiple Instance Learning (CLAM) classifier able to train under data scarcity effectively. We used a private...
-
Decision making process using deep learning
PublikacjaEndüstri 4.0, dördüncü endüstri devrimi veya Endüstriyel Nesnelerin İnterneti (IIoT) olarak adlandırılan sanayi akımı, işletmelere, daha verimli, daha büyük bir esneklikle, daha güvenli ve daha çevre dostu bir şekilde üretim yapma imkanı sunmaktadır. Nesnelerin İnterneti ile bağlantılı yeni teknoloji ve hizmetler birçok endüstriyel uygulamada devrim niteliği taşımaktadır. Fabrikalardaki otomasyon, tahminleyici bakım (PdM – Predictive...
-
Face with Mask Detection in Thermal Images Using Deep Neural Networks
PublikacjaAs the interest in facial detection grows, especially during a pandemic, solutions are sought that will be effective and bring more benefits. This is the case with the use of thermal imaging, which is resistant to environmental factors and makes it possible, for example, to determine the temperature based on the detected face, which brings new perspectives and opportunities to use such an approach for health control purposes. The...
-
Monitoring the BTEX Volatiles during 3D Printing with Acrylonitrile Butadiene Styrene (ABS) Using Electronic Nose and Proton Transfer Reaction Mass Spectrometry
PublikacjaWe describe a concept study in which the changes of concentration of benzene, toluene, ethylbenzene, and xylene (BTEX) compounds and styrene within a 3D printer enclosure during printing with different acrylonitrile butadiene styrene (ABS) filaments were monitored in real-time using a proton transfer reaction mass spectrometer and an electronic nose. The quantitative data on the concentration of the BTEX compounds, in particular...
-
Pedestrian detection in low-resolution thermal images
PublikacjaOver one million people die in car accidents worldwide each year. A solution that will be able to reduce situations in which pedestrian safety is at risk has been sought for a long time. One of the techniques for detecting pedestrians on the road is the use of artificial intelligence in connection with thermal imaging. The purpose of this work was to design a system to assist the safety of people and car intelligence with the use...
-
Convolutional Neural Networks for C. Elegans Muscle Age Classification Using Only Self-Learned Features
PublikacjaNematodes Caenorhabditis elegans (C. elegans) have been used as model organisms in a wide variety of biological studies, especially those intended to obtain a better understanding of aging and age-associated diseases. This paper focuses on automating the analysis of C. elegans imagery to classify the muscle age of nematodes based on the known and well established IICBU dataset. Unlike many modern classification methods, the proposed...
-
Knowledge pills in Education and Training: A Literature Review
PublikacjaObject and purpose: Knowledge pills (KPs) are a technique for transferring knowledge through short factual batches of content. In education and vocational training, they can help learners acquire specific pieces of knowledge in a few minutes, through a “microteaching” approach where learners can be involved in active and interactive exercises, quizzes, and games. Thanks to the advancements of multimedia platforms, they can contain...
-
SkinDepth - synthetic 3D skin lesion database
Dane BadawczeSkinDepth is the first synthetic 3D skin lesion database. The release of SkinDepth dataset intends to contribute to the development of algorithms for:
-
Managerial Energy in Sustainable Enterprises: Organizational Wisdom Approach
PublikacjaThe circular economy (CE) as an idea involves applying the concept of sustainable development that has been gaining worldwide support. This shift in perception of energy and resource-use from its linear to circular forms creates a specific business environment, which constitutes the subject of this research. This article aims to analyze the impact of a manager’s energy on organizational wisdom, focusing on its circular business...
-
The experimental evaluation and modeling of SBR removing nutrients under varied aeration conditions
PublikacjaSequencing batch reactors (SBR) are mainly characterized by sequential process phases of fill, react, settle, decant and idle periods that allow considerable flexibility in the design and operation in different conditions. This flexibility and the unique features of SBRs used to wastewater treatment by activated sludge systems operated in laboratory scale, allow not only conducting experiments for the standard conditions but also...
-
Load effect impact on the exploitation of concrete machine foundations used in the gas and oil industry
PublikacjaMachine foundations is a critical topic in the gas and oil industry, which design and exploitation require extensive technical knowledge. Machine foundations are the constructions which are intended for mounting on it a specific type of machine. The foundation has to transfer dynamic and static load from machine to the ground. The primary difference between machine foundations and building foundations is that the machine foundations...
-
Train the trainer course
PublikacjaThis chapter presents the concept, evaluation and evaluation results for the train the trainer. This concept of train the trainers is prepared within Workpackage 5 of EU-funded project: MASTER BSR (Erasmus+ Strategic Partnership Programme). Due to the nature of adult learning the content is designed for the use of participatory methods (involved, active). This method uses various techniques of active learning e.g. group work,...
-
Application of mechanistic and data-driven models for nitrogen removal in wastewater treatment systems
PublikacjaIn this dissertation, the application of mechanistic and data-driven models in nitrogen removal systems including nitrification and deammonification processes was evaluated. In particular, the influential parameters on the activity of the Nitrospira activity were assessed using response surface methodology (RSM). Various long-term biomass washout experiments were operated in two parallel sequencing batch reactor (SBR) with a different...
-
Speaker Recognition Using Convolutional Neural Network with Minimal Training Data for Smart Home Solutions
PublikacjaWith the technology advancements in smart home sector, voice control and automation are key components that can make a real difference in people's lives. The voice recognition technology market continues to involve rapidly as almost all smart home devices are providing speaker recognition capability today. However, most of them provide cloud-based solutions or use very deep Neural Networks for speaker recognition task, which are...
-
Machine-aided detection of SARS-CoV-2 from complete blood count
PublikacjaThe current gold standard for SARS-CoV-2 detection methods lacks the functionality to perform population screening. Complete blood count (CBC) tests are a cost-effective way to reach a wide range of people – e.g. according to the data of the Central Statistical Office of Poland from 2016, there are 3,000 blood diagnostic laboratories in Poland, and 46% of Polish people have at least one CBC test per year. In our work, we show...
-
Interactive Prototypes in Teaching User-Centred Design and Business Process Modelling
PublikacjaThis publication describes experiences gathered during the use of interactive prototyping in two areas: design of user interfaces for a touch screen information kiosk and interactive prototyping of business processes. Prototyping is promoted here as a technique useful for both visualizing design concepts and for stimulating communication within relevant teams. Developing interactive prototypes of use interfaces is discussed here...
-
Energy consumption optimization in wastewater treatment plants: Machine learning for monitoring incineration of sewage sludge
PublikacjaBiomass management in terms of energy consumption optimization has become a recent challenge for developed countries. Nevertheless, the multiplicity of materials and operating parameters controlling energy consumption in wastewater treatment plants necessitates the need for sophisticated well-organized disciplines in order to minimize energy consumption and dissipation. Sewage sludge (SS) disposal management is the key stage of...
-
Assessment of Failure Occurrence Rate for Concrete Machine Foundations Used in Gas and Oil Industry by Machine Learning
PublikacjaConcrete machine foundations are structures that transfer loads from machines in operation to the ground. The design of such foundations requires a careful analysis of the static and dynamic effects caused by machine exploitation. There are also other substantial differences between ordinary concrete foundations and machine foundations, of which the main one is that machine foundations are separated from the building structure....
-
Instrument detection and pose estimation with rigid part mixtures model in video-assisted surgeries
PublikacjaLocalizing instrument parts in video-assisted surgeries is an attractive and open computer vision problem. A working algorithm would immediately find applications in computer-aided interventions in the operating theater. Knowing the location of tool parts could help virtually augment visual faculty of surgeons, assess skills of novice surgeons, and increase autonomy of surgical robots. A surgical tool varies in appearance due to...