Wyniki wyszukiwania dla: remote learning
-
Application of creative problem-solving methods in remote learning. Bibliometric analysis
Publikacja -
Analysis of network infrastructure and QoS requirements for modern remote learning systems.
PublikacjaW referacie przedstawiono różne modele zdalnego nauczania. Podjęto próbę oceny wymagań nakładanych na infrastrukturę sieci. Ponadto przedstawiono mechanizmy QoS spotykane w sieciach teleinformatycznych oraz dokonano oceny możliwości ich współpracy w systemach edukacji zdalnej
-
Remote learning among students with and without reading difficulties during the initial stages of the COVID-19 pandemic
PublikacjaThis article presents the results of a survey on yet under-researched aspects of remote learning and learning difficulties in higher education during the initial stage (March – June 2020) of the COVID-19 pandemic. A total of 2182 students from University of Warsaw in Poland completed a two-part questionnaire regarding academic achievements in the academic year 2019/2020, living conditions and stress related to learning and pandemic,...
-
BIG DATA SIGNIFICANCE IN REMOTE MEDICAL DIAGNOSTICS BASED ON DEEP LEARNING TECHNIQUES
PublikacjaIn this paper we discuss the evaluation of neural networks in accordance with medical image classification and analysis. We also summarize the existing databases with images which could be used for training deep models that can be later utilized in remote home-based health care systems. In particular, we propose methods for remote video-based estimation of patient vital signs and other health-related parameters. Additionally, potential...
-
Thermal Images Analysis Methods using Deep Learning Techniques for the Needs of Remote Medical Diagnostics
PublikacjaRemote medical diagnostic solutions have recently gained more importance due to global demographic shifts and play a key role in evaluation of health status during epidemic. Contactless estimation of vital signs with image processing techniques is especially important since it allows for obtaining health status without the use of additional sensors. Thermography enables us to reveal additional details, imperceptible in images acquired...
-
Technological vs. Non-Technological Mindsets: Learning From Mistakes, and Organizational Change Adaptability to Remote Work
PublikacjaThe permanent implementation of the change in working methods, e.g., working in the virtual space, is problematic for some employees and, as a result, for management leaders. To explore this issue deeper, this study assumes that mindset type: technological vs. non-technological, may influence the organizational adaptability to change. Moreover, the key interest of this research is how non-technological mindsets...
-
Machine Learning-Based Wetland Vulnerability Assessment in the Sindh Province Ramsar Site Using Remote Sensing Data
PublikacjaWetlands provide vital ecological and socioeconomic services but face escalating pressures worldwide. This study undertakes an integrated spatiotemporal assessment of the multifaceted vulnerabilities shaping Khinjhir Lake, an ecologically significant wetland ecosystem in Pakistan, using advanced geospatial and machine learning techniques. Multi-temporal optical remote sensing data from 2000 to 2020 was analyzed through spectral...
-
Hybrid Laboratory of Radio Communication With Online Simulators and Remote Access
PublikacjaContribution: Two toolsets for the remote teaching of radio communication laboratory classes: 1) online simulators for individual work of students and 2) a remote access system to laboratory workstations for group work. Initial assumptions and method of implementation of both tools are presented. Background: The COVID-19 pandemic has forced a change in teaching at all levels of education. The specificity of practical classes, such...
-
Informal Workplace Learning and Employee Development. Growing in the Organizational New Normal
PublikacjaThe new paradigm in employee development assumes that employees should proactively direct their learning and growth. Most workplace learning is basically informal and occurs through daily work routines, peer-to-peer interactions, networking, and typically brings about significant positive outcomes to both individuals and organizations. Yet, workplace learning always occurs in a pre-defined context and this context has recently...
-
Internet photogrammetry as a tool for e-learning
PublikacjaAlong with Internet development, there were interactive applications which allow for remote sensing and photogrammetric analysis. An example of an application that can provide Earth images and make it possible to measure distances in these images is Google Earth. The authors, who have experience from 2001-2015 argue that it is possible and it is important to create more advanced photogrammetric network applications. In this there...
-
WEB-CAM AS A MEANS OF INFORMATION ABOUT EMOTIONAL ATTEMPT OF STUDENTS IN THE PROCESS OF DISTANT LEARNING
PublikacjaNew methods in education become more popular nowadays. Distant learning is a good example when teacher and student meet in virtual environment. Because interaction in this virtual world might be complicated it seems necessary to assure as much methods of conforming that student is still engaged in the process of learning as it is possible. We would like to present assumption that by means of web-cam we will be able to track facial...
-
A novel architecture for e-learning knowledge assessment systems
PublikacjaIn this paper we propose a novel e-learning system, dedicated strictly to knowledge assessment tasks. In its functioning it utilizes web-based technologies, but its design differs radically from currently popular e-learning solutions which rely mostly on thin-client architecture. Our research proved that such architecture, while well suited for didactic content distribution systems is ill-suited for knowledge assessment products....
-
A novel architecture for e-learning knowledge assessment systems
PublikacjaIn this paper we propose a novel e-learning system, dedicated strictly to knowledge assessment tasks. In its functioning it utilizes web-based technologies, but its design differs radically from currently popular e-learning solutions which rely mostly on thin-client architecture. Our research proved that such architecture, while well suited for didactic content distribution systems is ill-suited for knowledge assessment products....
-
Random Processes 2022/2023
Kursy OnlineThe e-learning course page for the purpose of the remote or hybrid learning for Random Processes.
-
Random Processes 2023/2024
Kursy OnlineThe e-learning course page for the purpose of the remote or hybrid learning for Random Processes.
-
Random Processes 2024/2025
Kursy OnlineThe e-learning course page for the purpose of the remote or hybrid learning for Random Processes.
-
A novel architecture for e-learning knowledge assessment systems
PublikacjaAbstract. In this paper we propose a novel e-learning system, dedicated strictly to knowledge assessment tasks. In its functioning it utilizes web-based technologies, but its design differs radically from currently popular e-learning solutions which rely mostly on thin-client architecture. Our research proved that such architecture,while well suited for didactic content distribution systems is ill-suited for knowledge assessment...
-
A Highly Scalable, Modular Architecture for Computer Aided Assessment e-Learning Systems
PublikacjaIn this chapter, the authors propose a novel e-learning system, dedicated strictly to knowledge assessment tasks. In its functioning it utilizes web-based technologies, but its design differs radically from currently popular e-learning solutions which rely mostly on thin-client architecture. The authors' research proved that such architecture, while well suited for didactic content distribution systems is ill-suited for knowledge...
-
Detecting Objects of Various Categories in Optical Remote Sensing Imagery Using Neural Networks
PublikacjaThe effective detection of objects in remote sensing images is of great research importance, so recent years have seen a significant progress in deep learning techniques in this field. However, despite much valuable research being conducted, many challenges still remain. A lot of research projects focus on detecting objects of a single category (class), while correctly detecting objects of different categories is much harder. The...
-
Spiral Search Grasshopper Features Selection with VGG19-ResNet50 for Remote Sensing Object Detection
PublikacjaRemote sensing object detection plays a major role in satellite imaging and is required in various scenarios such as transportation, forestry, and the ocean. Deep learning techniques provide efficient performance in remote sensing object detection. The existing techniques have the limitations of data imbalance, overfitting, and lower efficiency in detecting small objects. This research proposes the spiral search grasshopper (SSG)...
-
DevEmo—Software Developers’ Facial Expression Dataset
PublikacjaThe COVID-19 pandemic has increased the relevance of remote activities and digital tools for education, work, and other aspects of daily life. This reality has highlighted the need for emotion recognition technology to better understand the emotions of computer users and provide support in remote environments. Emotion recognition can play a critical role in improving the remote experience and ensuring that individuals are able...
-
Feature Weighted Attention-Bidirectional Long Short Term Memory Model for Change Detection in Remote Sensing Images
PublikacjaIn remote sensing images, change detection (CD) is required in many applications, such as: resource management, urban expansion research, land management, and disaster assessment. Various deep learning-based methods were applied to satellite image analysis for change detection, yet many of them have limitations, including the overfitting problem. This research proposes the Feature Weighted Attention (FWA) in Bidirectional Long...
-
Karol Flisikowski dr inż.
OsobyKarol Flisikowski jest profesorem uczelni w Katedrze Statystyki i Ekonometrii, Wydziału Zarządzania i Ekonomii Politechniki Gdańskiej. Jest odpowiedzialny jest za prowadzenie zajęć ze statystyki opisowej i matematycznej (w języku polskim i angielskim), a także badań naukowych w zakresie statystyki społecznej. Był uczestnikiem wielu konferencji o zasięgu krajowym, jak i międzynarodowym, gdzie prezentował wyniki prowadzonych przez...
-
Using Isolation Forest and Alternative Data Products to Overcome Ground Truth Data Scarcity for Improved Deep Learning-based Agricultural Land Use Classification Models
PublikacjaHigh-quality labelled datasets represent a cornerstone in the development of deep learning models for land use classification. The high cost of data collection, the inherent errors introduced during data mapping efforts, the lack of local knowledge, and the spatial variability of the data hinder the development of accurate and spatially-transferable deep learning models in the context of agriculture. In this paper, we investigate...
-
Cascade Object Detection and Remote Sensing Object Detection Method Based on Trainable Activation Function
PublikacjaObject detection is an important process in surveillance system to locate objects and it is considered as major application in computer vision. The Convolution Neural Network (CNN) based models have been developed by many researchers for object detection to achieve higher performance. However, existing models have some limitations such as overfitting problem and lower efficiency in small object detection. Object detection in remote...
-
Remote measurement of building usable floor area - Algorithms fusion
PublikacjaRapid changes that are taking place in the urban environment have significant impact on urban growth. Most cities and urban regions all over the world compete to increase resident and visitor satisfaction. The growing requirements and rapidity of introducing new technologies to all aspects of residents' lives force cities and urban regions to implement "smart cities" concepts in their activities. Real estate is one of the principal...
-
Spatiotemporal Assessment of Satellite Image Time Series for Land Cover Classification Using Deep Learning Techniques: A Case Study of Reunion Island, France
PublikacjaCurrent Earth observation systems generate massive amounts of satellite image time series to keep track of geographical areas over time to monitor and identify environmental and climate change. Efficiently analyzing such data remains an unresolved issue in remote sensing. In classifying land cover, utilizing SITS rather than one image might benefit differentiating across classes because of their varied temporal patterns. The aim...
-
Virtual reality tools in teaching the conservation and history of Polish architecture
PublikacjaVirtual reality and its impact on teaching conservation and architectural history is the subject of this article. During the COVID-19 crisis in 2020, the education of students of architecture was transferred by Gdańsk University of Technology (GUT), Gdańsk, Poland, to distance learning. This method has provided academics an opportunity to examine the impact of virtual reality and remote education on architectural history and conservation....
-
Is This Distance Teaching Planning That Bad?
PublikacjaIn spring 2020, university courses were moved into the virtual space due to the Covid-19 lockdown. In this paper, we use experience from courses at Gdańsk University of Technology and ETH Zurich to identify core problems in distance teaching planning and to discuss what to do and what not to do in teaching planning after the pandemic. We conclude that we will not return to the state of (teaching) affairs that we had previously....
-
Tomasz Edward Berezowski dr inż.
OsobyUrodził się w 1986 r. w Warszawie. Ukończył w 2009r. z wyróżnieniem Międzywydziałowe Studium Ochrony Środowiska SGGW w Warszawie, specjalność Restoration and Management of Environment. Doktorat obronił z wyróżnieniem na Vrije UIniversiteit Brussels w 2015 roku. W latach 2015-2017 pracował jako asystent, a następnie adiunkt na Wydziale Budownictwa i Inżynierii Środowiska SGGW. W roku 2017 został zatrudniony jako adiunkt na Wydziale...
-
Precise Identification of Different Cervical Intraepithelial Neoplasia (CIN) Stages, Using Biomedical Engineering Combined with Data Mining and Machine Learning
PublikacjaCervical cancer (CC) is one of the most common female cancers worldwide. It remains a significant global health challenge, particularly affecting women in diverse regions. The pivotal role of human papillomavirus (HPV) infection in cervical carcinogenesis underscores the critical importance of diagnostic strategies targeting both HPV infection and cervical...
-
Multiplicative Long Short-Term Memory with Improved Mayfly Optimization for LULC Classification
PublikacjaLand Use and Land Cover (LULC) monitoring is crucial for global transformation, sustainable land control, urban planning, urban growth prediction, and the establishment of climate regulations for long-term development. Remote sensing images have become increasingly important in many environmental planning and land use surveys in recent times. LULC is evaluated in this research using the Sat 4, Sat 6, and Eurosat datasets. Various...
-
A new multi-process collaborative architecture for time series classification
PublikacjaTime series classification (TSC) is the problem of categorizing time series data by using machine learning techniques. Its applications vary from cybersecurity and health care to remote sensing and human activity recognition. In this paper, we propose a novel multi-process collaborative architecture for TSC. The propositioned method amalgamates multi-head convolutional neural networks and capsule mechanism. In addition to the discovery...
-
Review of Segmentation Methods for Coastline Detection in SAR Images
PublikacjaSynthetic aperture radar (SAR) images acquired by airborne sensors or remote sensing satellites contain the necessary information that can be used to investigate various objects of interest on the surface of the Earth, including coastlines. The coastal zone is of great economic importance and is also very densely populated. The intensive and increasing use of coasts and changes of coastlines motivate researchers to try to assess...
-
Optymalizacja zasobów chmury obliczeniowej z wykorzystaniem inteligentnych agentów w zdalnym nauczaniu
PublikacjaRozprawa dotyczy optymalizacji zasobów chmury obliczeniowej, w której zastosowano inteligentne agenty w zdalnym nauczaniu. Zagadnienie jest istotne w edukacji, gdzie wykorzystuje się nowoczesne technologie, takie jak Internet Rzeczy, rozszerzoną i wirtualną rzeczywistość oraz deep learning w środowisku chmury obliczeniowej. Zagadnienie jest istotne również w sytuacji, gdy pandemia wymusza stosowanie zdalnego nauczania na dużą skalę...
-
COVID-19 and digital deprivation in Poland
PublikacjaResearch background: The problem of digital deprivation is already known, but the COVID-19 pandemic has highlighted its negative consequences. A global change in the way of life, work and socialisation resulting from the epidemic has indicated that a basic level of digital integration is becoming necessary. During the lockdown, people were forced to use ICTs to adapt to a rapidly changing reality. Current experience with coronavirus...
-
Australasian Remote Sensing Conference
Konferencje -
Method of selective fading as a educational tool to study the behaviour of prestressed concrete elements under excess loading
PublikacjaPrestressed structures are a key to realization of the boldest architectural ideas, characteristic feature of prestressed structure is better use of concrete material properties by insertion of internal forces. Learning about pre-stressed reinforced concrete structures is an integral part of Graduate Studies Program in construction engineering. Know-how of geometry change patterns in prestressed concrete elements under certain...
-
Study on transmission quality in cellular 4G and 5G networks between 2019–2021: Impact of the COVID-19 pandemic on the level of provided services by operating base transceiver stations
PublikacjaThe COVID-19 pandemic has significantly limited user mobility, not least among students. Remote learning had a particular impact on resource allocation in relation to using terrestrial cellular networks, especially 4G systems in urban agglomerations. This paper presents the results of a quality evaluation of an outdoor environment, carried out between 2019 and 2021 on the campus of a technical university. Annual studies are conducted...
-
Influence of Thermal Imagery Resolution on Accuracy of Deep Learning based Face Recognition
PublikacjaHuman-system interactions frequently require a retrieval of the key context information about the user and the environment. Image processing techniques have been widely applied in this area, providing details about recognized objects, people and actions. Considering remote diagnostics solutions, e.g. non-contact vital signs estimation and smart home monitoring systems that utilize person’s identity, security is a very important factor....
-
Automatic classification and mapping of the seabed using airborne LiDAR bathymetry
PublikacjaShallow coastal areas are among the most inhabited areas and are valuable for biodiversity, recreation and the economy. Due to climate change and sea level rise, sustainable management of coastal areas involves extensive exploration, monitoring, and protection. Current high-resolution remote sensing methods for monitoring these areas include bathymetric LiDAR. Therefore, this study presents a novel methodological approach to assess...
-
Long Distance Vital Signs Monitoring with Person Identification for Smart Home Solutions
PublikacjaAbstract— Imaging photoplethysmography has already been proved to be successful in short distance (below 1m). However, most of the real-life use cases of measuring vital signs require the system to work at longer distances, to be both more reliable and convenient for the user. The possible scenarios that system designers must have in mind include monitoring of the vital signs of residents in nursing homes, disabled people, who...
-
Changes in psychological distress among Polish medical university teachers during the COVID-19 pandemic
PublikacjaOur study aims to update knowledge about psychological distress and its changes in the Polish group of academic medical teachers after two years of a global pandemic. During the coronavirus disease, teachers were challenged to rapidly transition into remote teaching and adapt new assessment and evaluation systems for students, which might have been...
-
Optimized Deep Learning Model for Flood Detection Using Satellite Images
PublikacjaThe increasing amount of rain produces a number of issues in Kerala, particularly in urban regions where the drainage system is frequently unable to handle a significant amount of water in such a short duration. Meanwhile, standard flood detection results are inaccurate for complex phenomena and cannot handle enormous quantities of data. In order to overcome those drawbacks and enhance the outcomes of conventional flood detection...
-
Smartphones as tools for equitable food quality assessment
PublikacjaBackground: The ubiquity of smartphones equipped with an array of sophisticated sensors, ample processing power, network connectivity and a convenient interface makes them a promising tool for non-invasive, portable food quality assessment. Combined with the recent developments in the areas of IoT, deep learning algorithms and cloud computing, they present an opportunity for advancing wide-spread, equitable and sustainable food...
-
Evaluating Accuracy of Respiratory Rate Estimation from Super Resolved Thermal Imagery
PublikacjaNon-contact estimation of Respiratory Rate (RR) has revolutionized the process of establishing the measurement by surpassing some issues related to attaching sensors to a body, e.g. epidermal stripping, skin disruption and pain. In this study, we perform further experiments with image processing-based RR estimation by using various image enhancement algorithms. Specifically, we employ Super Resolution (SR) Deep Learning (DL) network...
-
Buzz-based honeybee colony fingerprint
PublikacjaNon-intrusive remote monitoring has its applications in a variety of areas. For industrial surveillance case, devices are capable of detecting anomalies that may threaten machine operation. Similarly, agricultural monitoring devices are used to supervise livestock or provide higher yields. Modern IoT devices are often coupled with Machine Learning models, which provide valuable insights into device operation. However, the data...
-
Improving Accuracy of Contactless Respiratory Rate Estimation by Enhancing Thermal Sequences with Deep Neural Networks
PublikacjaEstimation of vital signs using image processing techniques have already been proved to have a potential for supporting remote medical diagnostics and replacing traditional measurements that usually require special hardware and electrodes placed on a body. In this paper, we further extend studies on contactless Respiratory Rate (RR) estimation from extremely low resolution thermal imagery by enhancing acquired sequences using Deep...
-
Annual Convention for Survey, Mapping and Remote Sensing
Konferencje -
IEEE International Geoscience and Remote Sensing Symposium
Konferencje