Filtry
wszystkich: 2680
wybranych: 2161
-
Katalog
- Publikacje 2161 wyników po odfiltrowaniu
- Czasopisma 136 wyników po odfiltrowaniu
- Konferencje 22 wyników po odfiltrowaniu
- Wydawnictwa 1 wyników po odfiltrowaniu
- Osoby 172 wyników po odfiltrowaniu
- Projekty 7 wyników po odfiltrowaniu
- Kursy Online 85 wyników po odfiltrowaniu
- Wydarzenia 7 wyników po odfiltrowaniu
- Oferty 1 wyników po odfiltrowaniu
- Dane Badawcze 88 wyników po odfiltrowaniu
Filtry wybranego katalogu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: multiphase machine
-
Machine learning-based seismic response and performance assessment of reinforced concrete buildings
PublikacjaComplexity and unpredictability nature of earthquakes makes them unique external loads that there is no unique formula used for the prediction of seismic responses. Hence, this research aims to implement the most well-known Machine Learning (ML) methods in Python software to propose a prediction model for seismic response and performance assessment of Reinforced Concrete Moment-Resisting Frames (RC MRFs). To prepare 92,400 data...
-
Detection of People Swimming in Water Reservoirs with the Use of Multimodal Imaging and Machine Learning
PublikacjaEvery year in many countries, there are fatal unintentional drownings in different water reservoirs like swimming pools, lakes, seas, or oceans. The existing threats of this type require creating a method that could automatically supervise such places to increase the safety of bathers. This work aimed to create methods and prototype solutions for detecting people bathing in water reservoirs using a multimodal imaging system and...
-
Machine learning approach to packaging compatibility testing in the new product development process
PublikacjaThe paper compares the effectiveness of selected machine learning methods as modelling tools supporting the selection of a packaging type in new product development process. The main goal of the developed model is to reduce the risk of failure in compatibility tests which are preformed to ensure safety, durability, and efficacy of the finished product for the entire period of its shelf life and consumer use. This kind of testing...
-
Predicting emotion from color present in images and video excerpts by machine learning
PublikacjaThis work aims at predicting emotion based on the colors present in images and video excerpts using a machine-learning approach. The purpose of this paper is threefold: (a) to develop a machine-learning algorithm that classifies emotions based on the color present in an image, (b) to select the best-performing algorithm from the first phase and apply it to film excerpt emotion analysis based on colors, (c) to design an online survey...
-
Influence of frame sawing machine´s kinematics on saw blade tooth wear.
PublikacjaW pracy przedstawiono wpływ kinematyki pilarki ramowej na zużycie ostrzy piłtrakowych.
-
A Measurement-Based Approach for Speed Control of Induction Machines
PublikacjaThis paper presents an approach to design a measurement-based controller for induction machines. The proposed control approach is motivated by the fact that developing an appropriate mechanical model of such induction machines is a challenging task. Since our proposed control methodology is only on the basis of measured data, the controller design does not require any information about the model of the mechanical part. The control...
-
Multiscalar Model Based Control Systems for AC Machines
PublikacjaContents of the Chapter: Nonlinear transformations and feedback linearization. Models of the squirrel cage induction machine: Vector model of the squirrel cage induction machine. Multiscalar models of the squirrel cage induction machine.Feedback linearization of multiscalar models of the induction motor.Models of the double fed induction machine: Vector model of the double fed induction machine. Multiscalar model of the...
-
Programmed control of the spindle speed in modern milling machines.
PublikacjaW pracy przedstawiono nowe podejście do nadzorowania drgań wirujących narzędzi we współczesnych frezarkach. Polega ono na sterowaniu programowym w układach niestacjonarnych. Dotyczy to zamkniętych układów obrabiarek, kiedy to istotną rolę odgrywają drgania samowzbudne typu chatter. Sygnałem sterującym jest chwilowa zmiana prędkości obrotowej. Rozważano frezowanie czołowe smukłym frezem trzpieniowym na pionowym centrum frezarskim....
-
A review on analytical models of brushless permanent magnet machines
PublikacjaThis study provides an in-depth investigation of the use of analytical and numerical methods in analyzing electrical machines. Although numerical models such as the finite-element method (FEM) can handle complex geometries and saturation effects, they have significant computational burdens, are time-consuming, and are inflexible when it comes to changing machine geometries or input values. Analytical models based on magnetic equivalent...
-
Scheduling with Complete Multipartite Incompatibility Graph on Parallel Machines
PublikacjaIn this paper we consider a problem of job scheduling on parallel machines with a presence of incompatibilities between jobs. The incompatibility relation can be modeled as a complete multipartite graph in which each edge denotes a pair of jobs that cannot be scheduled on the same machine. Our research stems from the works of Bodlaender, Jansen, and Woeginger (1994) and Bodlaender and Jansen (1993). In particular, we pursue the...
-
A note on the affective computing systems and machines: a classification and appraisal
PublikacjaAffective computing (AfC) is a continuously growing multidisciplinary field, spanning areas from artificial intelligence, throughout engineering, psychology, education, cognitive science, to sociology. Therefore, many studies have been devoted to the aim of addressing numerous issues, regarding different facets of AfC solutions. However, there is a lack of classification of the AfC systems. This study aims to fill this gap by reviewing...
-
Scheduling on Uniform and Unrelated Machines with Bipartite Incompatibility Graphs
PublikacjaThe problem of scheduling jobs on parallel machines under an incompatibility relation is considered in this paper. In this model, a binary relation between jobs is given and no two jobs that are in the relation can be scheduled on the same machine. We consider job scheduling under the incompatibility relation modeled by a bipartite graph, under the makespan optimality criterion, on uniform and unrelated machines. Unrelated machines...
-
Sawing of wood - mechanics of cutting process, tools and machines.
PublikacjaW pracy przedstawiono wpływ obciażenia piły na dokładnośc przecinania. Zaprezentowano pilarkę ramową z eliptyczną trajektorią ruchu pił i hybrydowym dynamicznie wyrównoważonym napędem ramy piłowej, jak również wizyjny kontroler ostrzy pił tarczowych.
-
Determining the operational loads of the hybrid metalworking machines drive
Publikacja -
Determining efficient values of continuous technological machines parameters
Publikacja -
On the Dynamics of an Enhanced Coaxial Inertial Exciter for Vibratory Machines
Publikacja -
VARIABLE KINEMATICS OF HONING PROCESS – INFLUENCE ON MACHINED WORKPIECE
PublikacjaSurface quality of holes plays an important role in machine manufacturing industry especially in the production of car engines and hydraulic cylinders. Investigations of honing process were carried out by 6 years on horizontal CNC Sunnen’s honing machine HTH 4000S, on vertical conventional honing machine WMW’s SZS 200 and on CNC milling machine of Haas VF 3SS with equipment of Honingtec for honing. Measurements of cylindricity...
-
Frame sawing machines for accurate wood re-sawing
PublikacjaPrzedstawiono zwięzłą historię pilarek ramowych. Zaprezentowano ekologiczne i ekonomiczne zalety pilarek ramowych nowej generacji. Opisano podstawowe cechy układów kinematycznych nowoczesnych pilarek ramowych oraz podano ich podstawowe dane techniczne.
-
Neural Networks, Support Vector Machine and Genetic Algorithms for Autonomous Underwater Robot Support
PublikacjaIn this paper, artificial neural networks, a classification technique called support vector machine and meta-heuristics genetic algorithm have been considered for development in autonomous underwater robots. Artificial neural networks have been used for seabed modelling as well as support vector machine has been applied for the obstacles classification to avoid some collision problems. Moreover, genetic algorithm has been applied...
-
Techniki szybkiego prototypowania w budowie maszyn = Rapid prototyping techniques in machine building
PublikacjaW artykule omówiono przygotowanie oraz wykonanie poszczególnych elementów maszyn za pomocą techniki szybkiego prototypowania. W pierwszej części przedstawiono technologię wydruku przestrzennego oraz właściwości materiału budulcowego. Druga część artykułu została poświęcona przykładowym wydrukom i ich zastosowaniom w maszynach.
-
Sensorless control system of induction machine supplied by voltage source inverter with output filter
PublikacjaThe paper focuses on sensorless control of the induction machines supplied by inverter with the output filters. “The novel” idea of the speed observer which is based on the backstepping approach is shown. The standard structure of the exponential observer is extended by the integrators and additional Z vector. The simulation and experimental results validate the proposed solution.
-
A FPTAS for minimizing total completion time in a single machine time-dependent scheduling problem
PublikacjaIn this paper a single machine time-dependent scheduling problem with total completion time criterion is considered. There are given n jobs J1,…,Jn and the processing time pi of the ith job is given by pi=a+bisi, where si is the starting time of the ith job (i=1,…,n),bi is its deterioration rate and a is the common base processing time. If all jobs have deterioration rates different and not smaller than a certain constant u>0,...
-
Advances in Architectures, Big Data, and Machine Learning Techniques for Complex Internet of Things Systems
PublikacjaTe feld of Big Data is rapidly developing with a lot of ongoing research, which will likely continue to expand in the future. A crucial part of this is Knowledge Discovery from Data (KDD), also known as the Knowledge Discovery Process (KDP). Tis process is a very complex procedure, and for that reason it is essential to divide it into several steps (Figure 1). Some authors use fve steps to describe this procedure, whereas others...
-
Polymeric Bearings as a new base isolation system suitable for mitigating machine-induced vibrations
PublikacjaThe present paper summarizes the preliminary results of the experimental shaking table investigation conducted in order to verify the effectiveness of a new base isolation system consisting of Polymeric Bearings in reducing strong horizontal machine-induced vibrations. Polymeric Bearing considered in the present study is a prototype base isolation system, which was constructed with the use of a specially prepared flexible polymer...
-
Load effect impact on the exploitation of concrete machine foundations used in the gas and oil industry
PublikacjaMachine foundations is a critical topic in the gas and oil industry, which design and exploitation require extensive technical knowledge. Machine foundations are the constructions which are intended for mounting on it a specific type of machine. The foundation has to transfer dynamic and static load from machine to the ground. The primary difference between machine foundations and building foundations is that the machine foundations...
-
Quality evaluation of computer aided information retrieval from machine typed paper documents
PublikacjaCelem międzynarodowego projektu memorial jest wspomagane komputerowo rozpoznawanie maszynopisów. Referat prezentuje zagadnienie pomiaru jakości takiego procesu. Wskazano w nim potencjalne miejsca pojawiania się błędów oraz przedstawiono i sklasyfikowano odpowiednie miary.
-
A machine learning approach to classifying New York Heart Association (NYHA) heart failure
PublikacjaAccording to the European Society of Cardiology, globally the number of patients with heart failure nearly doubled from 33.5 million in 1990 to 64.3 million in 2017, and is further projected to increase dramatically in this decade, still remaining a leading cause of morbidity and mortality. One of the most frequently applied heart failure classification systems that physicians use is the New York Heart Association (NYHA) Functional...
-
Detection of circulating tumor cells by means of machine learning using Smart-Seq2 sequencing
PublikacjaCirculating tumor cells (CTCs) are tumor cells that separate from the solid tumor and enter the bloodstream, which can cause metastasis. Detection and enumeration of CTCs show promising potential as a predictor for prognosis in cancer patients. Furthermore, single-cells sequencing is a technique that provides genetic information from individual cells and allows to classify them precisely and reliably. Sequencing data typically...
-
Machine-learning methods for estimating compressive strength of high-performance alkali-activated concrete
PublikacjaHigh-performance alkali-activated concrete (HP-AAC) is acknowledged as a cementless and environmentally friendly material. It has recently received a substantial amount of interest not only due to the potential it has for being used instead of ordinary concrete but also owing to the concerns associated with climate change, sustainability, reduction of CO2 emissions, and energy consumption. The characteristics and amounts of the...
-
Game theory-based virtual machine migration for energy sustainability in cloud data centers
PublikacjaAs the demand for cloud computing services increases, optimizing resource allocation and energy consumption has become a key factor in achieving sustainability in cloud environments. This paper presents a novel approach to address these challenges through an optimized virtual machine (VM) migration strategy that employs a game-theoretic approach based on particle swarm optimization (PSO) (PSO-GTA). The proposed approach leverages...
-
From Data to Decision: Interpretable Machine Learning for Predicting Flood Susceptibility in Gdańsk, Poland
PublikacjaFlood susceptibility prediction is complex due to the multifaceted interactions among hydrological, meteorological, and urbanisation factors, further exacerbated by climate change. This study addresses these complexities by investigating flood susceptibility in rapidly urbanising regions prone to extreme weather events, focusing on Gdańsk, Poland. Three popular ML techniques, Support Vector Machine (SVM), Random Forest (RF), and...
-
Fast Machine-Learning-Enabled Size Reduction of Microwave Components Using Response Features
PublikacjaAchieving compact size has emerged as a key consideration in modern microwave design. While structural miniaturization can be accomplished through judicious circuit architecture selection, precise parameter tuning is equally vital to minimize physical dimensions while meeting stringent performance requirements for electrical characteristics. Due to the intricate nature of compact structures, global optimization is recommended,...
-
Analyzing the relationship between sound, color, and emotion based on subjective and machine-learning approaches
PublikacjaThe aim of the research is to analyze the relationship between sound, color, and emotion. For this purpose, a survey application was prepared, enabling the assignment of a color to a given speaker’s/singer’s voice recordings. Subjective tests were then conducted, enabling the respondents to assign colors to voice/singing samples. In addition, a database of voice/singing recordings of people speaking in a natural way and with expressed...
-
COVID-19 severity forecast based on machine learning and complete blood count data
PublikacjaProper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose...
-
COVID-19 severity forecast based on machine learning and complete blood count data
PublikacjaProper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose...
-
3D Machine Vision System for Inspection of Contact Strips in Railway Vehicle Current Collectors
PublikacjaConstruction and technical condition of current collectors is crucial to reliability and safety of railway transportation. According to the Technical Specifications for Interoperability railway vehicles in the European Union should be equipped with carbon contact strips. Excessive wear or defects of contact strips degrade the capability of undisturbed power transmission, cause faster wear of contact wire, and can even result in...
-
SSFR Test of Synchronous Machine for Different Saturation Levels using Finite-Element Method
PublikacjaIn this paper the StandStill Frequency Response characteristics (SSFR) of saturated synchronous generator (SG) have been calculated using Finite Element Method (FEM) analysis. In order to validate proposed approach for unsaturated conditions FEM simulation from Flux2D software has been compared with the measurements performed on the 10 kVA, 4- poles synchronous machine ELMOR GCe64a of salient rotor construction, equipped with a...
-
Speed Observer Structure of Induction Machine Based on Sliding Super-Twisting and Backstepping Techniques
PublikacjaThis paper presents an analysis of the two speed observer structures which are based on the backstepping and sliding super twisting approach. The observer stabilizing functions result from the Lyapunov theorem. To obtain the observer tuning gains the observer structure is linearized near the equilibrium point. The rotor angular speed is obtained from non-adaptive dependence. In the sensorless control system structure the classical...
-
Machine Learning and Text Analysis in an Artificial Intelligent System for the Training of Air Traffic Controllers
PublikacjaThis chapter presents the application of new information technology in education for the training of air traffic controllers (ATCs). Machine learning, multi-criteria decision analysis, and text analysis as the methods of artificial intelligence for ATCs training have been described. The authors have made an analysis of the International Civil Aviation Organization documents for modern principles of ATCs education. The prototype...
-
Non-Adaptive Rotor Speed Estimation of Induction Machine in an Adaptive Full-Order Observer
PublikacjaIn the sensorless control system of an induction machine, the rotor speed value is not measured but reconstructed by an observer structure. The rotor speed value can be reconstructed by the classical adaptive law with the integrator. The second approach, which is the main contribution of this paper, is the non-adaptive structure without an integrator. The proposed method of the rotor speed reconstruction is based on an algebraic...
-
Speed observer of induction machine based on backstepping and sliding mode for low‐speed operation
PublikacjaThis paper presents a speed observer design based on backstepping and slidingmode approaches. The inputs to the observer are the stator current and thevoltage vector components. This observer structure is extended to the integra-tors. The observer stabilizing functions contain the appropriate sliding surfaceswhich result from the Lyapunov function. The rotor angular speed is obtainedfrom the non‐adaptive formula with a sliding...
-
Problems associated with the up of actuating system of a single-disc lapping machine for flat surfaces
PublikacjaPrzedstawiono wyniki badań nagrzewania się podstawowych elementów układu wykonawczego docierarki jednotarczowej o standardowej kinematyce do obróbki powierzchni płaskich. Analizowano przyrost temperatury zespołu napędowego, rolek i pierścieni prowadzących separatory oraz tarczy docierającej i obrabianych elementów. Badano nagrzewanie się układu obróbkowego podczas wyrównywania żeliwnego narzędzia i docierania powierzchni płaskich....
-
Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android Malware Detection
PublikacjaDue to the exponential rise of mobile technology, a slew of new mobile security concerns has surfaced recently. To address the hazards connected with malware, many approaches have been developed. Signature-based detection is the most widely used approach for detecting Android malware. This approach has the disadvantage of being unable to identify unknown malware. As a result of this issue, machine learning (ML) for detecting malware...
-
The Problems of Application of PVD/CVD Thin Hard Coatings for Heavy-Loaded Machine Components
Publikacja -
SIMULATION AND EXPERIMENTAL RESEARCH OF CLAW POLE MACHINE WITH A HYBRID EXCITATION AND LAMINATED ROTOR CORE
Publikacja -
Detection of circulating tumor cells by means of machine learning using Smart-Seq2 sequencing
Publikacja -
Optimal selection of the sawdust separation device for a narrow-kerf sawing machine PRW15-M
PublikacjaW pracy przedstawiono granulometryczną analizę rozkładu wiórów i pyłu drzewnego otrzymanego w procesie przecinania suchych pryzm sosnowych na pilarce ramowej wielopiłowej PRW15-M. Wielkości wiórów mieściły się w granicach od 84,7 μm do nawet 14 mm. Te ostatnie są elementami będącymi efektem rozszczepiania dolnej powierzchni pryzmy przez wychodzące z niej ostrza piły. Większośc wiórów z najmniejszych frakcji ma postać sześciennych...
-
Hardware accelerated implementation of wavelet transform for machine vision in road traffic monitoring system
PublikacjaW artykule został opisany system monitorowania ruchu drogowego wykorzystujący sprzętową implementację transformacji falkowej. System został zaimplementowany za pomocą procesora zrealizowanego w technologii FPGA i małej kamery z układem konwersji analogowo-cyfrowej. System wykorzystuje transformację falkową do detekcji zatorów na skrzyżowaniach. W artykule zostały przedstawione przykładowe rezultaty rozpoznawania zatorów drogowych...
-
A Data Driven Model for Predicting RNA-Protein Interactions based on Gradient Boosting Machine
Publikacja -
Machine Learning for Control Systems Security of Industrial Robots: a Post-covid-19 Overview
Publikacja