Filters
total: 564
filtered: 94
-
Catalog
Chosen catalog filters
Search results for: deposition
-
XRD and electrochemical results for MoO3 films deposited using pulsed laser deposition system
Open Research DataThe attached data contains XRD and electrochemical results for MoO3 films deposited on fluorine-doped tin oxide glasses. Films were deposited using a pulsed laser deposition system at different conditions. Part of the samples was deposited at room temperature and then annealed at 575°C for given times (samples labeled PLD_RT_575C_xmin, where x stands...
-
Results of SEM examination of chitosan/Eudragit E 100 coatings electrophoretically deposited on the Ti grade 2 substrate
Open Research DataThe database contains the images of the microstructure of the coatings observed with the SEM scanning electron microscope. The chitosan/Eudragit E 100 coatings deposited on the Ti grade 2 substrate by an electrophoresis process were tested. Different process parameters like Eudragit E 100 concentration (0.25 g and 0.5 g in 100 mL of 1% (v/v) acetic...
-
Investigation of the uniformity of TeO2:Eu layer
Open Research DataTeO2 doped by Eu thin films manufactured by magnetron sputtering method were measured by XPS method. Te-Eu mosaic target with diameter of 50.8 mm was sputtered for about 45 min in argon-oxygen atmosphere what resulted in 300 nm film thickness deposition. The pressure in the deposition chamber was below 0.2 Pa and substrate was heated at 200 oC during...
-
TEM and EDX study of the Al2O3 ultra thin films
Open Research DataThe ultra-thin layers of Al2O3 were deposited on a silicon substrates. The method of atomic layer deposition (Beneq TFS 200 ALD system) was chosen as the proper method of dielectric layer deposition. This method provides precise thickness control down to a single atomic layer. The precursors used were trimethylaluminum (Sigma-Aldrich) and purified water....
-
Results of SEM examination of nanohydroxyapatite coatings doped nanoCu particles on Ti13Zr13Nb alloy
Open Research DataThe database contains the images of the microstructure of the coatings observed with the SEM scanning electron microscope. The nanohydroxyapatite (nanoHAp) with the addition of copper nanoparticle (nanoCu) coatings deposited on the Ti13Zr13Nb alloy by an electrophoresis process were tested. Two different fractions of nanoCu (with average particles size...
-
Structural investigations of the Al2O3 ultra thin films
Open Research DataUltra-thin layers of Al2O3 were deposited by atomic layer deposition (ALD) (Beneq TFS 200 ALD system). This method provides precise thickness control down to a single atomic layer. The precursors used were trimethylaluminum (Sigma-Aldrich) and purified water. The deposition of the atomic layer was carried out at 200 °C. Samples with a thickness of 2...
-
Structural analysis of the tellurium dioxide thin films
Open Research DataTeO2 thin films were deposited by magnetron sputtering method. After deposition, amorphous samples were annealed at various temperatures. Influence of annealing temperature on a presence of crystalline phase was investigated.
-
Application of optical microsphere in fiber optic sensors for measurement of electrochemical processes
Open Research Datainvestigation of the electrochemical processes using micro-sphere fiber-optic sensor with a zinc oxide (ZnO) coating applied by Atomic Layer Deposition method (ALD). The measurements were performed in 1M KNO3 during a decomposition of Bisphenol-A
-
Chemical investigation of the Al2O3 ultra-thin films
Open Research DataUltra-thin layers of oluminum oxide (Al2O3) were deposited by ALD method. Atomic layer deposition provides precise thickness control down to a single atomic layer. The precursors used were trimethylaluminum (Sigma-Aldrich) and purified water. The deposition of the atomic layer was carried out at 200 °C. Samples with a thickness of 2 and 8 nm of alumina...
-
Depth profile of the composition of 8 nm Al2O3 thin film
Open Research Data8 nm layer of aluminum oxide (Al2O3) was deposited by ALD method on a s. Atomic layer deposition provides precise thickness control down to a single atomic layer. The precursors used were trimethylaluminum (Sigma-Aldrich) and purified water. The deposition of the atomic layer was carried out at 200 °C. To investigate the profile of concenration of...
-
Plasmon resonance in a TiO2-Au NPs structures
Open Research DataInvestigated structures were deposited on a pre cleaned Corning 1737 glass substrates, which provided flat optical transmission characteristics and high transmission coefficient in a visible light range. Plasmonic nanostructures were formed as a result of thermal annealing. For gold films with thickness of 2.8 nm depiction a table-top dc magnetron sputtering...
-
XRD patterns of nickel-modified V2CTx
Open Research DataThe set includes data for XRD pattern preparation of nickel-modified V2CTx samples.
-
Carbon balance of SOFC fueled by biogas mixture at 750 C
Open Research DataThe dataset contains the calculated carbon balance for the SOFC fueled by synthetic biogas mixture (60:40 CH4:CO2). The outlet concentration of the gases from SOFC were measured using novel FTIR-based unit.
-
Morphology and conductivity investigations of nickel-molybdenium alloy by means of Scanning Spreading Resistance Microscopy
Open Research DataElectrolytically deposited nickel-molybdenum alloys are interesting materials because of their high corrosion resistance and low over-potential for hydrogen evolution. Despite many studies devoted to the deposition of these alloys, the mechanism of co-deposition is not fully understood [1]. The aim of the research was to preserve the electrochemically...
-
XRD for molybdenum sulfide modified with nickel or platinum nanoparticles
Open Research DataThe presented data showcases the results of XRD analysis conducted on molybdenum sulfide modified with nickel or platinum nanoparticles . The MoS2 was prepared on the TiO2 nanotube substrates via a facile hydrothermal method, followed by the deposition by magnetron sputtering of Ni or Pt nanoparticles on the MoS2 surface. Structural characterization...
-
Carbon activity coefficients of SOFC and SOFC with LSCNT layer fueled by biogas mixture at 750 C - longterm
Open Research DataThe dataset contains the calculated carbon activity coefficient for the SOFC and SOFC with LSCNT layer (La0.27Sr0.54Ce0.09Ni0.1Ti0.9O3-s) fueled by synthetic biogas mixture (60:40 CH4:CO2). The outlet concentration of the gases from SOFC were measured using novel FTIR-based unit.
-
Measurement spectrum obtained with the use of ZnO coated (100 nm) microsphere-based fiber-optic sensor - 200 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 100 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated (100 nm) microsphere-based fiber-optic sensor - 100 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 100 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated (100 nm) microsphere-based fiber-optic sensor - 300 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 100 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Electrical responses of nanoporous NiO films for light-activated nitrogen dioxide and acetone gas sensing
Open Research DataThe chemoresistive sensor response of nanoporous NiO films prepared by advanced gas deposition was investigated with and without simultaneous light irradiation, to detect nitrogen dioxide and acetone gases. The presented data show electrical responses presented as sensor resistance or relative changes in sensor resistance under selected environment...
-
Study of the influence of the presence of Dr fimbriae on the sedimentation of recombinant Escherichia coli strains: AAEC191A and BL21(DE3)
Open Research DataCell sedimentation in the medium is a common phenomenon in most bacterial enviroments. This study specifically investigated the impact of Dr fimbriae presence on cell deposition. To explore this, recombinant Escherichia coli strains were employed, including BL21(DE3)/pCC90, BL21(DE3)/pACYCpBAD, BL21(DE3)/pCC90 Dra D-mut, BL21(DE3)/pCC90 D54-STOP, AAEC191A/pCC90,...
-
Gold nanocubic structures agglomeration when put on conductive surfaces
Open Research DataThis dataset contains SEM images of gold nanocubes (AuNC), which were deposited at the conductive Si wafer surface and dried. The deposition method, the solvent used and AuNC concentration have a significant influence on the homogeneous distribution and their agglomeration at the surface, further influencing the electrochemical characteristics of the...
-
Luminescence properties of TeOx thin films annealing under an oxidizing atmosphere
Open Research DataThe DataSet contains the emission and excitation spectra of TeOx thin films. The material was obtained by the sol-gel method. The starting solution was prepared by mixing telluric acid (precursor) with thetraetylene glycol, water, and ethanol. The sol was obtained by vigorously stirring precursor solution at 50°C for 2h, then the temperature was raised...
-
SEM images of dewetted gold films
Open Research DataGold nanostructures were prepared on silicon - Si(111) as a substrate. as a result of dewetting process. Thin golds films were deposited using a table-top dc magnetron sputtering coater under pure Ar plasma conditions . The Au target had 99.99% purity, the rate of Au layer deposition was about 0.4 nm·s−1 and the incident power was 32 W. The thickness...
-
Oxidation of silver nanostructures
Open Research DataSilver nanostructures were prepared on Si substrate. Thin Ag films (2 and 6 nm thickness) were deposited using a tabletop dc magnetron sputtering coater (EM SCD 500, Leica) in pure Ar plasma. The Ag target was of 99.99% purity, the rate of layer deposition was about 0.4 nm·s−1 , and the incident power was in the range of 30–40 W. The layer thickness...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 140 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 160 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 180 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 220 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 200 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-0optic sensor - 250 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 210 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 300 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 270 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 190 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 260 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 290 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 170 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 280 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 150 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 230 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 240 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 220 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Optical properties of tellurium dioxide thin films
Open Research DataTeO2 and TeO2 doped by Eu thin films manufactured by magnetron sputtering method were measured by optical spectroscopy. Metallic Te target and Te-Eu mosaic target with diameter of 50.8 mm were sputtered for about 45 min in argon-oxygen atmosphere what resulted in 300 nm film thickness deposition. The pressure in the chamber was below 0.2 Pa and substrate...
-
Luminescence properties of TeOx-Eu thin films
Open Research DataThe DataSet contains the emission and excitation spectra of TeOx-Eu thin films. The material was obtained by the sol-gel method. The starting solution was prepared by mixing telluric acid (precursor) with thetraetylene glycol, water, and ethanol. Next, the 5% mol of europium ions were added, the nitrates were used as a source of rare-earth ions. The...
-
Luminescence properties of TeOx-Tb thin films
Open Research DataThe DataSet contains the emission and excitation spectra of TeOx-Tb thin films. The material was obtained by the sol-gel method. The starting solution was prepared by mixing telluric acid (precursor) with thetraetylene glycol, water, and ethanol. Next, the 5% mol of terbium ions were added, the nitrates were used as a source of rare-earth ions. The...
-
Luminescence properties of TeOx-Dy thin films
Open Research DataThe DataSet contains the emission and excitation spectra of TeOx-Dy thin films. The material was obtained by the sol-gel method. The starting solution was prepared by mixing telluric acid (precursor) with thetraetylene glycol, water, and ethanol. Next, the 5% mol of dysprosium ions were added, the nitrates were used as a source of rare-earth ions....
-
Gold nanocubic structures agglomeration when put on conductive surfaces
Open Research DataThis dataset contains SEM images of gold nanocubes (AuNC), which were deposited at the conductive Si wafer surface and dried. The deposition method, the solvent used and AuNC concentration have a significant influence on the homogeneous distribution and their agglomeration at the surface, further influencing the electrochemical characteristics of the...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - microsphere inspection s.2
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - microsphere inspection s.1
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...