Filters
total: 1970
filtered: 1534
-
Catalog
- Publications 1534 available results
- Journals 70 available results
- Conferences 110 available results
- People 133 available results
- Projects 1 available results
- Research Teams 1 available results
- e-Learning Courses 80 available results
- Events 19 available results
- Open Research Data 22 available results
Chosen catalog filters
displaying 1000 best results Help
Search results for: sztuczna inteligencja
-
COVID-19 severity forecast based on machine learning and complete blood count data
PublicationProper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose...
-
Fast Machine-Learning-Enabled Size Reduction of Microwave Components Using Response Features
PublicationAchieving compact size has emerged as a key consideration in modern microwave design. While structural miniaturization can be accomplished through judicious circuit architecture selection, precise parameter tuning is equally vital to minimize physical dimensions while meeting stringent performance requirements for electrical characteristics. Due to the intricate nature of compact structures, global optimization is recommended,...
-
Study of Multi-Class Classification Algorithms’ Performance on Highly Imbalanced Network Intrusion Datasets
PublicationThis paper is devoted to the problem of class imbalance in machine learning, focusing on the intrusion detection of rare classes in computer networks. The problem of class imbalance occurs when one class heavily outnumbers examples from the other classes. In this paper, we are particularly interested in classifiers, as pattern recognition and anomaly detection could be solved as a classification problem. As still a major part of...
-
Buried Object Characterization by Data-Driven Surrogates and Regression-Enabled Hyperbolic Signature Extraction
PublicationThis work addresses artificial-intelligence-based buried object characterization using FDTD-based electromagnetic simulation toolbox of a Ground Penetrating Radar (GPR) to generate B-scan data. In data collection, FDTD-based simulation tool, gprMax is used. The task is to estimate geophysical parameters of a cylindrical shape object of various radii, buried at different positions in the dry soil medium simultaneously and independently...
-
Novel approach to ecotoxicological risk assessment of sediments cores around the shipwreck by the use of self-organizing maps
PublicationMarine and coastal pollution plays an increasingly important role due to recent severe accidents which drew attention to the consequences of oil spills causing widespread devastation of marine ecosystems. All these problems cannot be solved without conducting environmental studies in the area of possible oil spill and performing chemometric evaluation of the data obtained looking for similar patterns among pollutants and optimize...
-
Zastosowanie elektronicznych zmysłów w analizie żywności. Cz. III Sztuczne oko
PublicationW dzisiejszych czasach konsumenci zwracają dużą uwagę na takie cechy żywności jak: zapach, smak i wygląd. Ze względu na to naukowcy od wielu lat podejmują próby naśladowania ludzkich narządów zmysłów za pomocą urządzeń określanych jako elektroniczne zmysły. Zaliczamy do nich elektroniczny nos i język oraz komputerowy system rozróżnienia barw i kształtów. Komputerowy system analizy obrazu zwany „Computer Vision” obejmuje zagadnienia...
-
Autonomous port management based AGV path planning and optimization via an ensemble reinforcement learning framework
PublicationThe rapid development of shipping trade pushes automated container terminals toward the direction of intelligence, safety and efficiency. In particular, the formulation of AGV scheduling tasks and the safety and stability of transportation path is an important part of port operation and management, and it is one of the basic tasks to build an intelligent port. Existing research mainly focuses on collaborative operation between...
-
Extended Reflexive Ontologies for the Generation of Clinical Recommendations
PublicationDecision recommendations are a set of alternative options for clinical decisions (e.g., diagnosis, prognosis, treatment selection, follow-up, and prevention) that are provided to decision makers by knowledge-based Clinical Decision Support Systems (k-CDSS) as aids. We propose to follow a ‘‘reasoning over domain’’ approach for the generation of decision recommendations by gathering and inferring conclusions from production rules....
-
Selection Pressure in the Evolutionary Path Planning Problem
PublicationThis article compares an impact of using various post-selection methods on the selection pressure and the quality of the solution for the problem of planning the path for a moving object using the evolutionary method. The concept of selection pressure and different methods of post-selection are presented. Article analyses behaviour of post-selection for four options of evolutionary algorithms. Based on the results achieved, waveform...
-
Deep learning approach for delamination identification using animation of Lamb waves
Publication -
Deep learning super-resolution for the reconstruction of full wavefield of Lamb waves
Publication -
OmicSelector: automatic feature selection and deep learning modeling for omic experiments
Publication -
Deep Learning-Based Intrusion System for Vehicular Ad Hoc Networks
PublicationThe increasing use of the Internet with vehicles has made travel more convenient. However, hackers can attack intelligent vehicles through various technical loopholes, resulting in a range of security issues. Due to these security issues, the safety protection technology of the in-vehicle system has become a focus of research. Using the advanced autoencoder network and recurrent neural network in deep learning, we investigated...
-
Deep learning based thermal image segmentation for laboratory animals tracking
PublicationAutomated systems for behaviour classification of laboratory animals are an attractive alternative to manual scoring. However, the proper animals separation and tracking, especially when they are in close contact, is the bottleneck of the behaviour analysis systems. In this paper, we propose a method for the segmentation of thermal images of laboratory rats that are in close contact during social behaviour tests. For this, we are...
-
Deep Learning Optimization for Edge Devices: Analysis of Training Quantization Parameters
PublicationThis paper focuses on convolution neural network quantization problem. The quantization has a distinct stage of data conversion from floating-point into integer-point numbers. In general, the process of quantization is associated with the reduction of the matrix dimension via limited precision of the numbers. However, the training and inference stages of deep learning neural network are limited by the space of the memory and a...
-
Deep learning for ultra-fast and high precision screening of energy materials
PublicationSemiconductor materials for energy storage are the core and foundation of modern information society and play important roles in photovoltaic system, integrated circuit, spacecraft technology, lighting applications, and other fields. Unfortunately, due to the long experiment period and high calculation cost, the high-precision band gap (the basic characteristic parameter) of semiconductor is difficult to obtain, which hinders the...
-
Autonomous pick-and-place system based on multiple 3Dsensors and deep learning
PublicationGrasping objects and manipulating them is the main way the robot interacts with its environment. However, for robots to operate in a dynamic environment, a system for determining the gripping position for objects in the scene is also required. For this purpose, neural networks segmenting the point cloud are usually applied. However, training such networks is very complex and their results are unsatisfactory. Therefore, we propose...
-
Deep learning approach on surface EEG based Brain Computer Interface
PublicationIn this work we analysed the application of con-volutional neural networks in motor imagery classification for the Brain Computer Interface (BCI) purposes. To increase the accuracy of classification we proposed the solution that combines the Common Spatial Pattern (CSP) with convolutional network (ConvNet). The electroencephalography (EEG) is one of the modalities we try to use for controlling the prosthetic arm. Therefor in this...
-
Using deep learning to increase accuracy of gaze controlled prosthetic arm
PublicationThis paper presents how neural networks can be utilized to improve the accuracy of reach and grab functionality of hybrid prosthetic arm with eye tracing interface. The LSTM based Autoencoder was introduced to overcome the problem of lack of accuracy of the gaze tracking modality in this hybrid interface. The gaze based interaction strongly depends on the eye tracking hardware. In this paper it was presented how the overall the...
-
Analysis of 2D Feature Spaces for Deep Learning-based Speech Recognition
Publicationconvolutional neural network (CNN) which is a class of deep, feed-forward artificial neural network. We decided to analyze audio signal feature maps, namely spectrograms, linear and Mel-scale cepstrograms, and chromagrams. The choice was made upon the fact that CNN performs well in 2D data-oriented processing contexts. Feature maps were employed in the Lithuanian word recognition task. The spectral analysis led to the highest word...
-
New method for personalization of avatar animation
PublicationThe paper presents a method for creating a personalized animation of avatar utilizing fuzzy inference. First the user designs a prototype version of animation, with keyframes only for important poses, roughly describing the action. Then animation is enriched with new motion phases calculated by the fuzzy inference system using descriptors given by the user. Various degrees of motion fluency and naturalness are possible to achieve....
-
Data-driven models for fault detection using kernel pca:a water distribution system case study
PublicationKernel Principal Component Analysis (KPCA), an example of machine learning, can be considered a non-linear extension of the PCA method. While various applications of KPCA are known, this paper explores the possibility to use it for building a data-driven model of a non-linear system-the water distribution system of the Chojnice town (Poland). This model is utilised for fault detection with the emphasis on water leakage detection....
-
Algorytmy przetwarzania widm Ramana w procesie detekcji substancji chemicznych
PublicationRozprawa przedstawia szczegółowo algorytmy, jakie są stosowane podczas przetwarzania widm Ramana, rejestrowanych przenośnym spektrometrem o skończonej rozdzielczości. Pracę podzielono na osiem rozdziałów. W pierwszym określono cel i tezy pracy. Rozdział drugi opisuje podstawowe pojęcia dotyczące zjawiska Ramana oraz zasady budowy urządzeń do pomiarów widm Ramana. W rozdziale trzecim scharakteryzowano błędy występujące podczas pomiarów...
-
Modeling and optimizing the removal of cadmium by Sinapis alba L. from contaminated soil via Response Surface Methodology and Artificial Neural Networks during assisted phytoremediation with sewage sludge
Publication -
Efficient sampling of high-energy states by machine learning force fields
Publication -
Modeling lignin extraction with ionic liquids using machine learning approach
PublicationLignin, next to cellulose, is the second most common natural biopolymer on Earth, containing a third of the organic carbon in the biosphere. For many years, lignin was perceived as waste when obtaining cellulose and hemicellulose and used as a biofuel for the production of bioenergy. However, recently, lignin has been considered a renewable raw material for the production of chemicals and materials to replace petrochemical resources....
-
Stacking and rotation-based technique for machine learning classification with data reduction
Publication -
POPULATION-BASED MULTI-AGENT APPROACH TO SOLVING MACHINE LEARNING PROBLEMS
Publication -
TensorHive: Management of Exclusive GPU Access for Distributed Machine Learning Workloads
PublicationTensorHive is a tool for organizing work of research and engineering teams that use servers with GPUs for machine learning workloads. In a comprehensive web interface, it supports reservation of GPUs for exclusive usage, hardware monitoring, as well as configuring, executing and queuing distributed computational jobs. Focusing on easy installation and simple configuration, the tool automatically detects the available computing...
-
A note on the affective computing systems and machines: a classification and appraisal
PublicationAffective computing (AfC) is a continuously growing multidisciplinary field, spanning areas from artificial intelligence, throughout engineering, psychology, education, cognitive science, to sociology. Therefore, many studies have been devoted to the aim of addressing numerous issues, regarding different facets of AfC solutions. However, there is a lack of classification of the AfC systems. This study aims to fill this gap by reviewing...
-
Study of Statistical Text Representation Methods for Performance Improvement of a Hierarchical Attention Network
PublicationTo effectively process textual data, many approaches have been proposed to create text representations. The transformation of a text into a form of numbers that can be computed using computers is crucial for further applications in downstream tasks such as document classification, document summarization, and so forth. In our work, we study the quality of text representations using statistical methods and compare them to approaches...
-
Innovations in Wastewater Treatment: Harnessing Mathematical Modeling and Computer Simulations with Cutting-Edge Technologies and Advanced Control Systems
PublicationThe wastewater treatment landscape in Central Europe, particularly in Poland, has undergone a profound transformation due to European Union (EU) integration. Fueled by EU funding and rapid technological advancements, wastewater treatment plants (WWTPs) have adopted cutting-edge control methods to adhere to EU Water Framework Directive mandates. WWTPs contend with complexities such as variable flow rates, temperature fluctuations,...
-
Conditions for increasing the recognition of degradation in thermal-flow diagnostics, taking into account environmental legal aspects
PublicationThe ever-increasing demand for electricity and the need for conventional sources to cooperate with renewable ones generates the need to increase the efficiency and safety of the generation sources. Therefore, it is necessary to find a way to operate existing facilities more efficiently with full detection of emerging faults. These are the requirements of Polish, European and International law, which demands that energy facilities...
-
Computer vision techniques applied for reconstruction of seafloor 3D images from side scan and synthetic aperture sonars data
PublicationThe Side Scan Sonar and Synthetic Aperture Sonar are well known echo signal processing technologies that produce 2D images of the seafloor. Both systems combines a number of acoustic pings to form a high resolution image of seafloor. It was shown in numerous papers that 2D images acquired by such systems can be transformed into 3D models of seafloor surface by algorithmic approach using intensity information, contained in a grayscaled...
-
A Proposed Machine Learning Model for Forecasting Impact of Traffic-Induced Vibrations on Buildings
PublicationTraffic-induced vibrations may cause various damages to buildings located near the road, including cracking of plaster, cracks in load-bearing elements or even collapse of the whole structure. Measurements of vibrations of real buildings are costly and laborious. Therefore the aim of the research is to propose the original numerical algorithm which allows us to predict, with high probability, the nega-tive dynamic impact of traffic-induced...
-
Metoda diagnostyki cieplno-przepływowej turbin parowych wykorzystująca elementy algorytmów genetycznych
PublicationRozprawa doktorska poświęcona jest opisowi budowania metody diagnostyki cieplno-przepływowej z wykorzystaniem elementów algorytmów genetycznych. Do tworzenia założeń i algorytmów metody posłużono się przykładem funkcjonowania bloku elektrowni kondensacyjnej ze szczególnym uwzględnieniem układu łopatkowego turbiny parowej. Celem pracy jest zbudowanie metody diagnostyki cieplno-przepływowej. Zadaniem metody jest przeprowadzenie procesu...
-
DEEP CONVOLUTIONAL NEURAL NETWORKS AS A DECISION SUPPORT TOOL IN MEDICAL PROBLEMS – MALIGNANT MELANOMA CASE STUDY
PublicationThe paper presents utilization of one of the latest tool from the group of Machine learning techniques, namely Deep Convolutional Neural Networks (CNN), in process of decision making in selected medical problems. After the survey of the most successful applications of CNN in solving medical problems, the paper focuses on the very difficult problem of automatic analyses of the skin lesions. The authors propose the CNN structure...
-
Deep-Learning-Based Precise Characterization of Microwave Transistors Using Fully-Automated Regression Surrogates
PublicationAccurate models of scattering and noise parameters of transistors are instrumental in facilitating design procedures of microwave devices such as low-noise amplifiers. Yet, data-driven modeling of transistors is a challenging endeavor due to complex relationships between transistor characteristics and its designable parameters, biasing conditions, and frequency. Artificial neural network (ANN)-based methods, including deep learning...
-
Investigating Feature Spaces for Isolated Word Recognition
PublicationMuch attention is given by researchers to the speech processing task in automatic speech recognition (ASR) over the past decades. The study addresses the issue related to the investigation of the appropriateness of a two-dimensional representation of speech feature spaces for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and timefrequency signal representation...
-
Towards semantic-rich word embeddings
PublicationIn recent years, word embeddings have been shown to improve the performance in NLP tasks such as syntactic parsing or sentiment analysis. While useful, they are problematic in representing ambiguous words with multiple meanings, since they keep a single representation for each word in the vocabulary. Constructing separate embeddings for meanings of ambiguous words could be useful for solving the Word Sense Disambiguation (WSD)...
-
Exploring the Solubility Limits of Edaravone in Neat Solvents and Binary Mixtures: Experimental and Machine Learning Study
PublicationThis study explores the edaravone solubility space encompassing both neat and binary dissolution media. Efforts were made to reveal the inherent concentration limits of common pure and mixed solvents. For this purpose, the published solubility data of the title drug were scrupulously inspected and cured, which made the dataset consistent and coherent. However, the lack of some important types of solvents in the collection called...
-
Solubility of dapsone in deep eutectic solvents: Experimental analysis, molecular insights and machine learning predictions
PublicationBackground. Dapsone (DAP) is an anti-inflammatory and antimicrobial active pharmaceutical ingredient used to treat, e.g., AIDS-related diseases. However, low solubility is a feature hampering its efficient use. Objectives. First, deep eutectic solvents...
-
Machine-Learning Methods for Estimating Performance of Structural Concrete Members Reinforced with Fiber-Reinforced Polymers
PublicationIn recent years, fiber-reinforced polymers (FRP) in reinforced concrete (RC) members have gained significant attention due to their exceptional properties, including lightweight construction, high specific strength, and stiffness. These attributes have found application in structures, infrastructures, wind power equipment, and various advanced civil products. However, the production process and the extensive testing required for...
-
Predicting seismic response of SMRFs founded on different soil types using machine learning techniques
PublicationPredicting the Maximum Interstory Drift Ratio (M-IDR) of Steel Moment-Resisting Frames (SMRFs) is a useful tool for designers to approximately evaluate the vulnerability of SMRFs. This study aims to explore supervised Machine Learning (ML) algorithms to build a surrogate prediction model for SMRFs to reduce the need for complex modeling. For this purpose, twenty well-known ML algorithms implemented in Python software are trained...
-
Energy consumption optimization in wastewater treatment plants: Machine learning for monitoring incineration of sewage sludge
PublicationBiomass management in terms of energy consumption optimization has become a recent challenge for developed countries. Nevertheless, the multiplicity of materials and operating parameters controlling energy consumption in wastewater treatment plants necessitates the need for sophisticated well-organized disciplines in order to minimize energy consumption and dissipation. Sewage sludge (SS) disposal management is the key stage of...
-
Greencoin: prototype of a mobile application facilitating and evidencing pro-environmental behavior of citizens
PublicationAmong many global challenges, climate change is one of the biggest challenges of our times. While it is one of the most devastating problems humanity has ever faced, one question naturally arises: can individuals make a difference? We believe that everyone can contribute and make a difference to the community and lives of others. However, there is still a lack of effective strategies to promote and facilitate pro-environmental...
-
Food analysis using artificial senses.
PublicationNowadays, consumers are paying great attention to the characteristics of food such as smell, taste, and appearance. This motivates scientists to imitate human senses using devices known as electronic senses. These include electronic noses, electronic tongues, and computer vision. Thanks to the utilization of various sensors and methods of signal analysis, artificial senses are widely applied in food analysis for process monitoring...
-
Data Acquisition in a Manoeuver Auto-negotiation System
PublicationTypical approach to collision avoidance systems with artificial intelligence support is that such systems assume a central communication and management point (such as e.g. VTS station), usually located on shore. This approach is, however, not applicable in case of an open water encounter. Thus, recently a new approach towards collision avoidance has been proposed, assuming that all ships in the encounter, either restricted or open...
-
Intelligent system supporting diagnosis of malignant melanoma
PublicationMalignant melanomas are the most deadly type of skin cancers. Early diagnosis is a key for successful treatment and survival. The paper presents the system for supporting the process of diagnosis of skin lesions in order to detect a malignant melanoma. The paper describes the development process of an intel-ligent system purposed for the diagnosis of malignant melanoma. Presented sys-tem can be used as a decision support system...
-
Scenarios as a tool supporting decisions in urban energy policy: The analysis using fuzzy logic, multi-criteria analysis and GIS tools
Publication