Filters
total: 260
filtered: 183
Search results for: MASS TRANSFER
-
Evaluating the influence of radiative heat flux on convective heat transfer from a vertical plate in air using an improved heating plate
PublicationThis article examines the influence of radiative heat flux on the accuracy of the results of free convective heat transfer in air. In order to carry out these tests, based on the experience gained during the operation of a plate heated on one side, compensated by a reverse heat loss flux counter-heater, a unique double-sided heating sandwich plate was designed and built, consisting of three thin epoxy resin plates reinforced with...
-
Comparison of heat transfer from single- and double-sided heated horizontal plate under free convection in air with constant heat flux condition
PublicationThis paper presents the results of an experimental and numerical study of convective heat transfer from a newly designed double-sided heated horizontal plate in air. To ensure equal heat transfer from both surfaces, the plate was equipped with two independently supplied electric heaters and resistance thermometers on each side. Minimizing the plate's thickness reduced lateral heat loss and improved measurement accuracy. The study...
-
Recent advances of selected passive heat transfer intensification methods for phase change material-based latent heat energy storage units: A review
PublicationThe following article overviews recent studies regarding heat transfer enhancement methods, explicitly focusing on fins and coils utilization, in phase change material-based latent heat thermal energy storage systems. It discusses the influence of various geometrical and material parameters on the melting and solidification processes, as well as the orientation of the heat transfer surface within the storage tank. Additionally,...
-
CO2 capture through direct-contact condensation in a spray ejector condenser and T- junction separator
PublicationThe design principle underlying the steam condensation and CO2 purification in a gas power plant with a focus on reducing CO2 emissions encompasses the deployment of a spray ejector condenser (SEC) and separator. This innovative system facilitates direct-contact condensation of steam with non-condensable gas (CO2) by inter acting with a spray of subcooled water, seamlessly integrated with a T-junction separator mechanism aimed...
-
Verification of the method of reconstructing convective velocity fields on the basis of temperature fields in vertical, differential and equally heated, open and closed channels
PublicationThis paper describes a method of reconstructing velocity fields, i.e. a numerical reconstruction procedure (NRP) that involves the numerical processing of experimentally measured temperature distributions in free convection heat transfer. The NRP consists in solving only the continuity and Navier–Stokes equations with an additional source term. This term is proportional to a known temperature (e.g. from a thermal imaging camera)...
-
Analytical solution of non-stationary heat conduction problem for two sliding layers with time-dependent friction conditions
PublicationIn this article we conduct an overview of various types of thermal contact conditions at the sliding interface. We formulate a problem of non-stationary heat conduction in two sliding layers with generalized thermal contact conditions allowing for dependence of the heat-generation coefficient and contact heat transfer coefficient on time. We then derive an analytical solution of the problem by constructing a special coordinate...
-
A novel concept of enhanced direct-contact condensation of vapour- inert gas mixture in a spray ejector condenser
PublicationAn analytical model of direct steam condensation (DCC) in the novel idea of spray ejector condenser (SEC) in the presence of inert gas has been developed. It is based on continuity, momentum and energy equations for the steam-carbon dioxide mixture and direct contact condensation mechanisms due to heat transfer and concentration. Crucial in the process of DCC is atomisation of the motive fluid in the ejector. The effect of atomised...
-
A model of liquid film breakdown formed due to impingement of a two-phase jet on a horizontal surface
PublicationThe present work aims to provide an explanation to the phenomenon of breakdown of the thin liquid film created by impinging two-phase, liquid-gas jet. Existing in the literature models describe merely thebreakdown of single phase liquid films. The model presented here is based on examination of mass and energy equations under the applied criterion of the minimum of total energy. That allows to determinethe minimum thickness of...
-
Study on effective front region thickness of PCM in thermal energy storage using a novel semi-theoretical model
PublicationThermal energy storage in mobile applications, particularly battery of electric vehicles, is currently gaining a lot of importance. In this paper, a semi-theoretical time-dependent mathematical model of the phase change in a double shell thermal energy storage module has been developed where the inner tube is a heat exchange surface. An effective front region thickness for the melting and solidification process has been studied....
-
Minichannel and minigap classification criteria based on the aspect ratio of the minigeometry: A numerical study
PublicationA detailed numerical investigation has been carried out to analyze the diabatic flow distribution and velocity profile in 18 minigeometries with various aspect ratios for V-type and I-type flow configurations (for 36 cases) assuming ethanol as a working fluid. The aim of the study is to distinguish the value of the aspect ratio for which the flow in minigeometry starts to be two-dimensional (minigap). Cases with a constant Reynolds...
-
An inverse algorithm for contact heat conduction problems with an interfacial heat source based on a first-order thermocouple model
PublicationInverse problems of contact heat conduction with an interfacial heat source are common in various fields of science, engineering and technology. In this study, an algorithm for their solution is developed based on an inverse parametric optimisation method with an impulse response function describing the heat partition and contact heat transfer. A first-order thermocouple model with a time constant parameter is embedded in the impulse...
-
The use of thermal imaging camera to estimate velocity profiles based on temperature distribution in a free convection boundary layer
PublicationThis work describes an attempt to assess whether the temperature field from a thermal imaging camera can be converted into a velocity field with an accuracy sufficient for qualitative conducting or describing the phenomenon, i.e. when the Navier-Stokes, Fourier-Kirchhoff and continuity equations are mutually coupled. The consequence of this link between temperature fields and velocity is the possibility to formulate the hypothesis...
-
Infrared techniques for natural convection investigations in channels between two vertical, parallel, isothermal and symmetrically heated plates
PublicationThe effect of the gap width between two symmetrically heated vertical, parallel, isothermal plates on intensity of natural convective heat transfer in a gas (Pr = 0.71) was experimentally studied using the balance and gradient methods. In the former method heat fluxes were determined based on measurements of the voltage and electric current supplying the heaters placed inside the walls. In the latter, heat fluxes were calculated...
-
Perfect thermal contact of hyperbolic conduction semispaces with an interfacial heat source
PublicationThe problem of thermal contact between two bodies with a heat source at their interface presents great scientific and practical interest. On the time scale of a nanosecond or shorter, heat propagation should be considered in the form of thermal waves of finite speeds. This study investigated the thermal behaviour of hyperbolic conduction semispaces in perfect thermal contact subjected to the action of an interfacial heat source....
-
Thermal boundary conditions to simulate friction layers and coatings at sliding contacts
PublicationA brief review of the thermal boundary conditions specified at sliding interfaces was performed. New thermal boundary conditions were derived aimed at solving problems of sliding with account of surface layers representing friction layers and tribological coatings. Based on the assumption of linear temperature distributions in the surface layers, the proposed conditions enable one to simplify simulations by eliminating the surface...
-
Partition of friction heat between sliding semispaces due to adhesion-deformational heat generation
PublicationAnalytical expressions of heat-partition coefficient and contact temperatures for two sliding semispaces with account for adhesion-deformational heat generation and contact heat exchange have been obtained. The rate of deformational heat generation is assumed to decay exponentially with increase of distance from the interface. It has been shown that heat-generation configuration and the intensity of contact heat exchange have impact...
-
A finite element analysis of thermal energy inclination based on ternary hybrid nanoparticles influenced by induced magnetic field
PublicationThe use of hybrid nanoparticles to improve thermal processes is a key method that has implications for a variety of interventions utilized in many sectors. This paper aimed to look into the impacts of ternary nanoparticles on hyperbolic tangent materials to establish their thermal characteristics. Flow describing equations have been explored in the presence of heat production, non-Fourier heat flux, and an induced magnetic field....
-
Method of reconstructing two-dimensional velocity fields on the basis of temperature field values measured with a thermal imaging camera
PublicationThis paper describes a novel numerical reconstruction procedure (NRP) of the velocity field during natural convective heat transfer from a two-sided, isothermal, heated vertical plate based only on the known temperature field obtained, e.g. with a thermal imaging camera. It has been demonstrated that with a knowledge of temperature distributions, the NRP enables the reconstruction of velocity fields by solving the Navier-Stokes...
-
A simple model of circular hydraulic pump
PublicationRozpatrzono warunki powstawania osiowosymetrycznego uskoku hydraulicznego. Przedstawiono model, w którym rozpatrzono obecność dodatkowych strat w równaniu Bernoulliego. Przyczyniają się one do powstawania dodatkowego wiru w miejscu uskoku. Porównanie z wynikami badań eksperymentalnych potwierdza słuszność przyjętych tez.
-
The new concept of capillary forces aided evaporator for application in domestic organic rankine cycle
PublicationThis paper presents studies on the possibility of applying capillary forces induced in the porous structure to a modern design of evaporator. The potential application of such heat exchanger is for example an evaporator of the domestic micro combined heat and power (CHP) unit. One of the problems in the micro-CHP is excessive demand for pumping power. The proposed design helps in overcoming that issue. In the evaporator outlined...
-
Temperature, velocity and mean turbulence structure in strongly heated internal gas flows. Comparison of numerical predictions with data
PublicationW pracy przedstawiono symulacje numeryczne przy użyciu szeregu modeli turbulencji celem analizy silnie ogrzewanego przepływu powietrza w pionowych rurach. Obliczenia porównano z danymi eksperymentalnymi. Analizowano modyfikacje pola prędkości, temperatury i turbulencji. W rozpatrywanych warunkach odnotowano silną wrażliwość obliczeń na silnie zmieniające się pole temperatury. Stwierdzono, że analizowane przypadki najlepiej odzwierciedla...
-
Modeling of natural convection with Smoothed Particle Hydrodynamics: Non-Boussinesq formulation
Publication -
Thermal and solutal performance of Cu/CuO nanoparticles on a non-linear radially stretching surface with heat source/sink and varying chemical reaction effects
Publication -
Experimental and numerical study of thermal and electrical potential of BIPV/T collector in the form of air-cooled photovoltaic roof tile
PublicationAmong renewable energy sources, Building-Integrated Photovoltaic/Thermal (BIPV/T) systems are gaining increasing interest. To improve their economic competitiveness, technologies that increase their efficiency are searched for. The paper is devoted to evaluating the impact of various air-cooling configurations on the thermal and electrical performance of a photovoltaic roof tile. A numerical model of the own experimental system...
-
Jeffreys heat conduction in coupled semispaces subjected to interfacial heating
PublicationA Jeffreys heat conduction problem for coupled semispaces subjected to the action of an interfacial heat source was defined. An analytical solution of the problem was derived for a polynomial specific power of the heat source using the Laplace transform approach. The asymptotic and parametric analysis was performed for different ratios of thermal conductivities , thermal diffusivities , thermal relaxation times and coefficients...
-
Spinning Fluids Reactor: A new design of a gas – liquid contactor
PublicationCurrent trends in chemical reactor design are based on adapting these to the requirements of a particular chemical process. Processes involving reactions between the gas and liquid phase in particular require precise adjustment of all parameters. The common denominator for most modern design solutions is enhancement of the mass transfer area and the overall volumetric mass transfer coefficient. Gas – liquid contactors evolved from...
-
An experimental investigation on the effect of new continuous core-baffle geometry on the mixed convection heat transfer in shell and coil heat exchanger
PublicationIn the article, the authors presented the influence of continuous core-baffle geometry at mixed convection heat transfer in shell and coil heat exchanger. Experiments were carried out for a large power range, i.e. from 100W to 1200W and mass flow rates ranging from 0.01 kg/s to 0.025 kg/s. During the experiments, the mass flow rate of cooling water, the temperature of water at the inlet and outlet as well as the wall temperature...
-
Effect of Temperature and Nanoparticle Concentration on Free Convective Heat Transfer of Nanofluids
PublicationA theoretical analysis of the influence of temperature and nanoparticle concentration on free convection heat transfer from a horizontal tube immersed in an unbounded nanofluid was presented. The Nusselt (Nu) number and heat transfer coefficient were parameters of the intensity of the convective heat transfer. For free convection, the Nu number was a function of the Rayleigh (Ra) number and Prandtl (Pr) number. The Rayleigh (Ra)...
-
Modelling of heat transfer in supercritical pressure recuperators
PublicationIn the paper presented is analysis of convective flow heat transfer at supercritical pressure in channels of heat exchanger working in the thermodynamic cycle. The modelling is based on the division of the flow into three regions, namely the heavy fluid, a two phase flow consisting of the heavy and light fluids and finally the light fluid flow. Modelling is concentrated on the region of simultaneous flow of two fluids divided into...
-
Information transfer during the universal gravitational decoherence
PublicationRecently Pikovski et al. (Nat Phys 11:668, 2015) have proposed in an intriguing universal decoherence mechanism, suggesting that gravitation may play a conceptually important role in the quantum-to-classical transition, albeit vanishingly small in everyday situations. Here we analyze information transfer induced by this mechanism. We show that generically on short time-scales, gravitational decoherence leads to a redundant information...
-
Prediction of flow boiling heat transfer coefficient for carbon dioxide in minichannels and conventional channels
PublicationIn the paper are presented the results of calculations using authors own model to predict heat transfer coefficient during flow boiling for carbon dioxide. The experimental data from various researches were scrutinised conducted for a full range of quality variation and wide range of mass velocity. The aim of the study was to test the sensitivity of the in-house model. The work shows the importance of taking into account surface...
-
Prediction of flow boiling heat transfer coefficient for carbon dioxide in minichannels and conventional channels
PublicationIn the paper presented are the results of calculations using authors own model to predict heat transfer coefficient during flow boiling of carbon dioxide. The experimental data from various resea rches were collected. Calculations were conducted for a full range of quality variation and a wide range of mass velocity. The aim of the study was to test the sensitivity of the in-house model. The results show the importance of taking into...
-
Experimental Investigation of Free Convection Heat Transfer from Horizontal Cylinder to Nanofluids
PublicationThe results of free convection heat transfer investigation from a horizontal, uniformly heated tube immersed in a nanofluid are presented. Experiments were performed with five base fluids, i.e., ethylene glycol (EG), distilled water (W) and the mixtures of EG and water with the ratios of 60/40, 50/50, 40/60 by volume, so the Rayleigh (Ra) number range was 3 104 Ra 1.3 106 and the Prandtl (Pr) number varied from 4.4 to 176....
-
The Role of Electron Transfer in the Fragmentation of Phenyl and Cyclohexyl Boronic Acids
PublicationIn this study, novel measurements of negative ion formation in neutral potassium-neutral boronic acid collisions are reported in electron transfer experiments. The fragmentation pattern of phenylboronic acid is comprehensively investigated for a wide range of collision energies, i.e., from 10 to 1000 eV in the laboratory frame, allowing some of the most relevant dissociation channels to be probed. These studies were performed in...
-
Implementation of DEIS for reliable fault monitoring and detection in PEMFC single cells and stacks
PublicationDynamic Electrochemical Impedance Spectroscopy (DEIS) was presented as novel method for diagnostic and monitoring of PEMFC stack and single cells operation. Impedance characteristics were obtained simultaneously with current - voltage characteristics for stack and each individual cell. Impedance measurements were performed in galvanodynamic mode. It allowed to compare performance of each cell and identification of faulty cell operation...
-
Numerical Study of Turbulent Flow and Heat Transfer of Nanofluids in Pipes
PublicationIn this work, Nusselt number and friction factor are calculated numerically for turbulent pipe flow (Reynolds number between 6000 and 12000) with constant heat flux boundary condition using nanofluids. The nanofluid is modelled with the single-phase approach and the simulation results are compared with experimental data. Ethylene glycol and water, 60:40 EG/W mass ratio, as base fluid and SiO2 nanoparticles are used as nanofluid...
-
EXPERIMENTAL VERIFICATION OF THE METHOD OF FLOW BOILING AND FLOW CONDENSATION HEAT TRANSFER PREDICTION FOR SELECTED FLUIDS
PublicationIn the paper presented are the results of calculations using authors own model to predict heat transfer coefficient during flow boiling of different refrigerants. The experimental data from various research studies from literature were collected. Calculations were conducted for a full range of quality variation and a wide range of mass velocity. The aim of the study was to test the sensitivity of the in- house developed model....
-
Modelling of heat transfer during flow condensation of natural refrigerants under conditions of increased saturation pressure
PublicationThe paper presents a modified in-house model for calculating heat transfer coefficients during flow condensation, which can be applied to a variety of working fluids, but natural refrigerants in particular, at full range thermodynamic parameters with a particular focus on increased saturation pressure. The modified model is based on a strong physical basis, namely the hypothesis of analogy between the heat transfer coefficient...
-
Anionic states of C6Cl6 probed in electron transfer experiments
PublicationThis is the first comprehensive investigation on the anionic species formed in collisions of fast neutral potassium (K) atoms with neutral hexachlorobenzene (C6Cl6) molecules in the laboratory frame range from 10 up to 100 eV. In such ion-pair formation experiments, we also report a novel K+ energy loss spectrum obtained in the forward scattering giving evidence of the most accessible electronic states. The vertical electron affinity...
-
Energy conversion in systems-contained laser irradiated metallic nanoparticles - comparison of results from analytical solutions and numerical methods
PublicationThis work introduces the theoretical method of metallic nanoparticles’ (NPs’) heat and mass transfer where the particles are coated on a surface (base), together with considering the case wherein nanoparticles move freely in a pipe. In order to simulate the heat transfer, energy and radiative transfer equations are adjusted to the considered issue. NPs’ properties are determined following the nanofluidic theories, whereas absorption...
-
Numerical study of turbulent flow and heat transfer of nanofluids in pipes
PublicationIn this work, Nusselt number and friction factor are calculated numerically for turbulent pipe flow (6 000 < Re < 12 000) with constant heat flux boundary condition using nanofluids. The nanofluid is modelled with the single-phase approach and the simulation results are compared with experimental data of Vajjha et al. [1]. Ethylene glycol and water, 60:40 EG/W mass ratio, as base fluid and SiO2 nanoparticles are used as nanofluid...
-
Thermal-FSI modeling of flow and heat transfer in a heat exchangerbased on minichanels
PublicationIn this paper selected numerical modelling problems for an advanced thermal-FSI ("Fluid Solid Interaction") mini-channel heat exchanger model are presented. Special attention is given to the heat transfer between the separated mediums for different mass flows. Similar modelling problems have also been discussed in the literature dedicated to numerical and theoretical modelling problems for typical heat exchangers [1, 2, 3]. Basic...
-
Experimental verification of natural convective heat transfer phenomenon from isothermal cuboids
PublicationArtykuł przedstawia wyniki badań eksperymentalnych konwekcyjnej wymiany ciepła od powierzchni izotermicznego prostopadłościanu o stosunkowo dużych rozmiarach (t.j. 1.5 m x1 m x 0.5 m). Celem tych badań było otrzymanie wyników, które można by porównać z otrzymanymi dla obiektu w mniejszej skali i prezentowano we wcześniejszych doniesieniach (Int. J. Heat Mass Transfer 46 (2003) 2169-2178). Rozwiązanie eksperymentalne przeprowadzono...
-
The effect of reduced pressure on carbon dioxide flow boiling heat transfer in minichannels
Publication. In the paper presented are the results of the study on the effect of reduced pressure on flow boiling heat transfer data in minichannels as well as conventional ones. That effect renders that most of heat transfer correlations fail to return appropriate results of predictions. Mostly they have been developed for the reduced pressures from the range 0.1-0.3. The special correction has been postulated to the in-house model of flow...
-
Experimental investigation of forced convection of water-Al2O3 nanofluids inside horizontal tubes,
PublicationIn this paper, forced convection of water–Al2O3 nanofluids inside horizontal copper tube is studied experimentally. Experiments were conducted for three, i.e. 0.1%, 1% and 5% nanoparticle mass concentrations under transition and turbulent flow regimes. Average heat transfer coefficients and pressure drop values were determined and compared to distilled water. Enhancement of heat transfer for lower nanoparticle concentration and...
-
Ozone nanobubble technology as a novel AOPs for pollutants degradation under high salinity conditions
PublicationConventional water treatment systems frequently exhibit diminished efficiency at high salinity - a significant issue especially for real industrial effluents - mostly due to the creation of intricate structures between pollutants and salts. One of the primary obstacles associated with high salinity conditions is the generation of by-products that pose additional hurdles for treatment. In this work, we have investigated the novel...
-
Turbulence models impact on the flow and thermal analyses of jet impingement
PublicationAccurate numerical reconstruction of heat and mass transfer processes in particular applications, such a jet impingement, is difficult to obtain even with the use of modern computational methods. In the proposed paper, the flow and thermal phenomena occurring during single minijet impingement on the flat, concave and convex, heated surfaces were considered. Problem of impingement on non-flat surface, still not common and purely...
-
Flow boiling intensification in minichannels by means of mechanical flow turbulising inserts
PublicationThe work presents the results of experimental investigation on heat transfer in minichannels. Refrigerant R123 was used as a test fluid. Single vertical silver tubes of 380 mm length and 2.3 mm diameter were examined with two variants of turbulising inserts. A wide range of parameters was considered, namely mass flux G=534-3011 kg/(m2s), heat flux qw=28.5-68.4 kW/m2, saturation temperature Tsat=23-86 stC and the full range of vapour...
-
Comparison of predictive methods for flow boiling heat transfer in conventional channels and minichannels - the effect of reduced pressure
PublicationIn the paper are presented the results of follow on studies from [1]–[3] using authors own model to predict heat transfer coefficient during flow boiling. The model has been tested against a large selection of experimental data collected from various researchers to investigate the sensitivity of the in-house developed model. The collected experimental data came from various studies from literature and were conducted for the full...
-
Computational analysis of power-law fluids for convective heat transfer in permeable enclosures using Darcy effects
PublicationNatural convection is a complex environmental phenomenon that typically occurs in engineering settings in porous structures. Shear thinning or shear thickening fuids are characteristics of power-law fuids, which are non-Newtonian in nature and fnd wide-ranging uses in various industrial processes. Non-Newtonian fuid fow in porous media is a difcult problem with important consequences for energy systems and heat transfer. In this...