Filters
total: 10949
filtered: 9679
-
Catalog
Chosen catalog filters
displaying 1000 best results Help
Search results for: probelem-based learning
-
Learning from Imbalanced Data Streams Based on Over-Sampling and Instance Selection
Publication -
Autonomous Perception and Grasp Generation Based on Multiple 3D Sensors and Deep Learning
PublicationGrasping objects and manipulating them is the main way the robot interacts with its environment. However, for robots to operate in a dynamic environment, a system for determining the gripping position for objects in the scene is also required. For this purpose, neural networks segmenting the point cloud are usually applied. However, training such networks is very complex and their results are unsatisfactory. Therefore, we propose...
-
Influence of Thermal Imagery Resolution on Accuracy of Deep Learning based Face Recognition
PublicationHuman-system interactions frequently require a retrieval of the key context information about the user and the environment. Image processing techniques have been widely applied in this area, providing details about recognized objects, people and actions. Considering remote diagnostics solutions, e.g. non-contact vital signs estimation and smart home monitoring systems that utilize person’s identity, security is a very important factor....
-
Reinforcement Learning Algorithm and FDTD-based Simulation Applied to Schroeder Diffuser Design Optimization
PublicationThe aim of this paper is to propose a novel approach to the algorithmic design of Schroeder acoustic diffusers employing a deep learning optimization algorithm and a fitness function based on a computer simulation of the propagation of acoustic waves. The deep learning method employed for the research is a deep policy gradient algorithm. It is used as a tool for carrying out a sequential optimization process the goal of which is...
-
Analyzing the relationship between sound, color, and emotion based on subjective and machine-learning approaches
PublicationThe aim of the research is to analyze the relationship between sound, color, and emotion. For this purpose, a survey application was prepared, enabling the assignment of a color to a given speaker’s/singer’s voice recordings. Subjective tests were then conducted, enabling the respondents to assign colors to voice/singing samples. In addition, a database of voice/singing recordings of people speaking in a natural way and with expressed...
-
Fusion-based Representation Learning Model for Multimode User-generated Social Network Content
PublicationAs mobile networks and APPs are developed, user-generated content (UGC), which includes multi-source heterogeneous data like user reviews, tags, scores, images, and videos, has become an essential basis for improving the quality of personalized services. Due to the multi-source heterogeneous nature of the data, big data fusion offers both promise and drawbacks. With the rise of mobile networks and applications, UGC, which includes...
-
Analysis of the Capability of Deep Learning Algorithms for EEG-based Brain-Computer Interface Implementation
PublicationMachine learning models have received significant attention for their exceptional performance in classifying electroencephalography (EEG) data. They have proven to be highly effective in extracting intricate patterns and features from the raw signal data, thereby contributing to their success in EEG classification tasks. In this study, we explore the possibilities of utilizing contemporary machine learning algorithms in decoding...
-
COVID-19 severity forecast based on machine learning and complete blood count data
PublicationProper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose...
-
COVID-19 severity forecast based on machine learning and complete blood count data
PublicationProper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose...
-
Data-Driven Surrogate-Assisted Optimization of Metamaterial-Based Filtenna Using Deep Learning
PublicationIn this work, a computationally efficient method based on data driven surrogate models is pro-posed for the design optimization procedure of a Frequency Selective Surface (FSS)-based filtering antenna (Filtenna). A Filtenna acts as a as module that simultaneously pre-filters unwanted sig-nals, and enhances the desired signals at the operating frequency. However, due to a typically large number of design variables of FSS unit elements,...
-
Enhancing environmental literacy through urban technology-based learning. The PULA app case
PublicationThis study addresses the need to enhance environmental literacy, focusing on urban adults through mobile applications, based on the example of PULA app that engages early adopters in gamified pro- environmental activities, offering insights into informal learning. Grounded in 'urban pedagogy,' the study combines semi-structured interviews with 17 application testers and quantitative data analysis, unveiling motivations, user feedback,...
-
Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures
PublicationMany studies have been performed to put quantifying uncertainties into the seismic risk assessment of reinforced concrete (RC) buildings. This paper provides a risk-assessment support tool for purpose of retrofitting and potential design strategies of RC buildings. Machine Learning (ML) algorithms were developed in Python software by innovative methods of hyperparameter optimization, such as halving search, grid search, random...
-
DentalSegmentator: Robust open source deep learning-based CT and CBCT image segmentation
Publication -
Assessment Of the Relevance of Best Practices in The Development of Medical R&D Projects Based on Machine Learning
PublicationMachine learning has emerged as a fundamental tool for numerous endeavors within health informatics, bioinformatics, and medicine. However, novices among biomedical researchers and IT developers frequently lack the requisite experience to effectively execute a machine learning project, thereby increasing the likelihood of adopting erroneous practices that may result in common pitfalls or overly optimistic predictions. The paper...
-
Integrating Experience-Based Knowledge Representation and Machine Learning for Efficient Virtual Engineering Object Performance
PublicationMachine learning and Artificial Intelligence have grown significant attention from industry and academia during the past decade. The key reason behind interest is such technologies capabilities to revolutionize human life since they seamlessly integrate classical networks, networked objects and people to create more efficient environments. In this paper, the Knowledge Representation technique of Set of Experience...
-
Machine Learning Applied to Aspirated and Non-Aspirated Allophone Classification—An Approach Based on Audio "Fingerprinting"
PublicationThe purpose of this study is to involve both Convolutional Neural Networks and a typical learning algorithm in the allophone classification process. A list of words including aspirated and non-aspirated allophones pronounced by native and non-native English speakers is recorded and then edited and analyzed. Allophones extracted from English speakers’ recordings are presented in the form of two-dimensional spectrogram images and...
-
Attention-Based Deep Learning System for Classification of Breast Lesions—Multimodal, Weakly Supervised Approach
PublicationBreast cancer is the most frequent female cancer, with a considerable disease burden and high mortality. Early diagnosis with screening mammography might be facilitated by automated systems supported by deep learning artificial intelligence. We propose a model based on a weakly supervised Clustering-constrained Attention Multiple Instance Learning (CLAM) classifier able to train under data scarcity effectively. We used a private...
-
Project-Based Learning as a Method for Interdisciplinary Adaptation to Climate Change—Reda Valley Case Study
PublicationThe challenges of the global labour market require university authorities to extend traditional forms of education into more innovative and effective solutions. Project-based learning (PjBL) is one of highly effective methods for acquiring knowledge and teaching “soft” skills to future employees. This article describes an experimental use of PjBL at a university with a long history of teaching based on traditional methods—the Gdansk...
-
Deep-Learning-Based Precise Characterization of Microwave Transistors Using Fully-Automated Regression Surrogates
PublicationAccurate models of scattering and noise parameters of transistors are instrumental in facilitating design procedures of microwave devices such as low-noise amplifiers. Yet, data-driven modeling of transistors is a challenging endeavor due to complex relationships between transistor characteristics and its designable parameters, biasing conditions, and frequency. Artificial neural network (ANN)-based methods, including deep learning...
-
Intra-subject class-incremental deep learning approach for EEG-based imagined speech recognition
PublicationBrain–computer interfaces (BCIs) aim to decode brain signals and transform them into commands for device operation. The present study aimed to decode the brain activity during imagined speech. The BCI must identify imagined words within a given vocabulary and thus perform the requested action. A possible scenario when using this approach is the gradual addition of new words to the vocabulary using incremental learning methods....
-
Machine-Learning-Powered EM-Based Framework for Efficient and Reliable Design of Low Scattering Metasurfaces
PublicationPopularity of metasurfaces has been continuously growing due to their attractive properties including the ability to effectively manipulate electromagnetic (EM) waves. Metasurfaces comprise optimized geometries of unit cells arranged as a periodic lattice to obtain a desired EM response. One of their emerging application areas is the stealth technology, in particular, realization of radar cross section (RCS) reduction. Despite...
-
SELECTING A REPRESENTATIVE DATA SET OF THE REQUIRED SIZE USING THE AGENT-BASED POPULATION LEARNING ALGORITHM
Publication -
Fractional-Order PID Controller (FOPID)-Based Iterative Learning Control for a Nonlinear Boiler System
Publication -
Deep learning based segmentation using full wavefield processing for delamination identification: A comparative study
Publication -
Lead-free bismuth-based perovskites coupled with g–C3N4: A machine learning based novel approach for visible light induced degradation of pollutants
PublicationThe use of metal halide perovskites in photocatalytic processes has been attempted because of their unique optical properties. In this work, for the first time, Pb-free Bi-based perovskites of the Cs3Bi2X9 type (X = Cl, Br, I, Cl/Br, Cl/I, Br/I) were synthesized and subjected to comprehensive morphological, structural, and surface analyses, and photocatalytic properties in the phenol degradation reaction were examined. Furthermore,...
-
Machine-Learning-Based Global Optimization of Microwave Passives with Variable-Fidelity EM Models and Response Features
PublicationMaximizing microwave passive component performance demands precise parameter tuning, particularly as modern circuits grow increasingly intricate. Yet, achieving this often requires a comprehensive approach due to their complex geometries and miniaturized structures. However, the computational burden of optimizing these components via full-wave electromagnetic (EM) simulations is substantial. EM analysis remains crucial for circuit...
-
Satellite Image Classification Using a Hierarchical Ensemble Learning and Correlation Coefficient-Based Gravitational Search Algorithm
PublicationSatellite image classification is widely used in various real-time applications, such as the military, geospatial surveys, surveillance and environmental monitoring. Therefore, the effective classification of satellite images is required to improve classification accuracy. In this paper, the combination of Hierarchical Framework and Ensemble Learning (HFEL) and optimal feature selection is proposed for the precise identification...
-
Cost-Efficient Measurement Platform and Machine-Learning-Based Sensor Calibration for Precise NO2 Pollution Monitoring
PublicationAir quality significantly impacts human health, the environment, and the economy. Precise real-time monitoring of air pollution is crucial for managing associated risks and developing appropriate short- and long-term measures. Nitrogen dioxide (NO2) stands as a common pollutant, with elevated levels posing risks to the human respiratory tract, exacerbating respiratory infections and asthma, and potentially leading to chronic lung...
-
Fast Fading Influence on the Deep Learning-Based LOS and NLOS Identificationin Wireless Body Area Networks
PublicationIn the article, the fast fading influence on the proposed DL (Deep Learning) approach for LOS (Line-of-Sight) and NLOS (Non-Line-of-Sight) conditions identification in Wireless Body Area Networks is investigated. The research was conducted on the basis of the off-body communication measurements using the developed mobile measurement stand, in an indoor environment for both static and dynamic scenarios. The measurements involved...
-
Autonomous port management based AGV path planning and optimization via an ensemble reinforcement learning framework
PublicationThe rapid development of shipping trade pushes automated container terminals toward the direction of intelligence, safety and efficiency. In particular, the formulation of AGV scheduling tasks and the safety and stability of transportation path is an important part of port operation and management, and it is one of the basic tasks to build an intelligent port. Existing research mainly focuses on collaborative operation between...
-
Towards the 4th industrial revolution: networks, virtuality, experience based collective computational intelligence, and deep learning
PublicationQuo vadis, Intelligent Enterprise? Where are you going? The authors of this paper aim at providing some answers to this fascinating question addressing emerging challenges related to the concept of semantically enhanced knowledge-based cyber-physical systems – the fourth industrial revolution named Industry 4.0.
-
Prediction of Wastewater Quality at a Wastewater Treatment Plant Inlet Using a System Based on Machine Learning Methods
PublicationOne of the important factors determining the biochemical processes in bioreactors is the quality of the wastewater inflow to the wastewater treatment plant (WWTP). Information on the quality of wastewater, sufficiently in advance, makes it possible to properly select bioreactor settings to obtain optimal process conditions. This paper presents the use of classification models to predict the variability of wastewater quality at...
-
Detection of Cystic Fibrosis Symptoms Based on X-Ray Images Using Machine Learning- Pilot Study
Publication -
Universal Predictors of Dental Students’ Attitudes towards COVID-19 Vaccination: Machine Learning-Based Approach
Publication -
Improving platelet‐RNA‐based diagnostics: a comparative analysis of machine learning models for cancer detection and multiclass classification
PublicationLiquid biopsy demonstrates excellent potential in patient management by providing a minimally invasive and cost-effective approach to detecting and monitoring cancer, even at its early stages. Due to the complexity of liquid biopsy data, machine-learning techniques are increasingly gaining attention in sample analysis, especially for multidimensional data such as RNA expression profiles. Yet, there is no agreement in the community...
-
Machine Learning-Based Wetland Vulnerability Assessment in the Sindh Province Ramsar Site Using Remote Sensing Data
PublicationWetlands provide vital ecological and socioeconomic services but face escalating pressures worldwide. This study undertakes an integrated spatiotemporal assessment of the multifaceted vulnerabilities shaping Khinjhir Lake, an ecologically significant wetland ecosystem in Pakistan, using advanced geospatial and machine learning techniques. Multi-temporal optical remote sensing data from 2000 to 2020 was analyzed through spectral...
-
Optimization-based stacked machine-learning method for seismic probability and risk assessment of reinforced concrete shear walls
PublicationEfficient seismic risk assessment aids decision-makers in formulating citywide risk mitigation plans, providing insights into building performance and retrofitting costs. The complexity of modeling, analysis, and post-processing of the results makes it hard to fast-track the seismic probabilities, and there is a need to optimize the computational time. This research addresses seismic probability and risk assessment of reinforced...
-
A Computationally Efficient Model for Predicting Successful Memory Encoding Using Machine-Learning-based EEG Channel Selection
PublicationComputational cost is an important consideration for memory encoding prediction models that use data from dozens of implanted electrodes. We propose a method to reduce computational expense by selecting a subset of all the electrodes to build the prediction model. The electrodes were selected based on their likelihood of measuring brain activity useful for predicting memory encoding better than chance (in terms of AUC). A logistic...
-
Presentation of Novel Architecture for Diagnosis and Identifying Breast Cancer Location Based on Ultrasound Images Using Machine Learning
Publication -
Active Annotation in Evaluating the Credibility of Web-Based Medical Information: Guidelines for Creating Training Data Sets for Machine Learning
PublicationMethods Results Discussion References Abbreviations Copyright Abstract Background: The spread of false medical information on the web is rapidly accelerating. Establishing the credibility of web-based medical information has become a pressing necessity. Machine learning offers a solution that, when properly deployed, can be an effective tool in fighting medical misinformation on the web. Objective: The aim of this study is to...
-
Forecasting energy consumption and carbon dioxide emission of Vietnam by prognostic models based on explainable machine learning and time series
PublicationThis study assessed the usefulness of algorithms in estimating energy consumption and carbon dioxide emissions in Viet- nam, in which the training dataset was used to train the models linear regression, random forest, XGBoost, and AdaBoost, allowing them to comprehend the patterns and relationships between population, GDP, and carbon dioxide emissions, energy consumption. The results revealed that random forest, XGBoost, and AdaBoost...
-
Machine Learning Algorithm-Based Tool and Digital Framework for Substituting Daylight Simulations In Early- Stage Architectural Design Evaluation
PublicationThe aim of this paper is to examine the new method of obtaining the simulation-based results using backpropagation of errors artificial neural networks. The primary motivation to conduct the research was to determine an alternative, more efficient and less timeconsuming method which would serve to achieve the results of daylight simulations. Three daylight metrics: Daylight Factor, Daylight Autonomy and Daylight Glare Probability have...
-
Personalized prediction of the secondary oocytes number after ovarian stimulation: A machine learning model based on clinical and genetic data
PublicationControlled ovarian stimulation is tailored to the patient based on clinical parameters but estimating the number of retrieved metaphase II (MII) oocytes is a challenge. Here, we have developed a model that takes advantage of the patient’s genetic and clinical characteristics simultaneously for predicting the stimulation outcome. Sequence variants in reproduction-related genes identified by next-generation sequencing were matched...
-
Predicting Compressive Strength of Cement-Stabilized Rammed Earth Based on SEM Images Using Computer Vision and Deep Learning
Publication -
Deep Learning-based Recalibration of the CUETO and EORTC Prediction Tools for Recurrence and Progression of Non–muscle-invasive Bladder Cancer
Publication -
High-resolution synthesis of high-density breast mammograms: Application to improved fairness in deep learning based mass detection
Publication -
Improvement of speech intelligibility in the presence of noise interference using the Lombard effect and an automatic noise interference profiling based on deep learning
PublicationThe Lombard effect is a phenomenon that results in speech intelligibility improvement when applied to noise. There are many distinctive features of Lombard speech that were recalled in this dissertation. This work proposes the creation of a system capable of improving speech quality and intelligibility in real-time measured by objective metrics and subjective tests. This system consists of three main components: speech type detection,...
-
Tuning Ferulic Acid Solubility in Choline-Chloride- and Betaine-Based Deep Eutectic Solvents: Experimental Determination and Machine Learning Modeling
PublicationDeep eutectic solvents (DES) represent a promising class of green solvents, offering particular utility in the extraction and development of new formulations of natural compounds such as ferulic acid (FA). The experimental phase of the study undertook a systematic investigation of the solubility of FA in DES, comprising choline chloride or betaine as hydrogen bond acceptors and six different polyols as hydrogen bond donors....
-
Low-Cost and Highly-Accurate Behavioral Modeling of Antenna Structures by Means of Knowledge-Based Domain-Constrained Deep Learning Surrogates
PublicationThe awareness and practical benefits of behavioral modeling methods have been steadily growing in the antenna engineering community over the last decade or so. Undoubtedly, the most important advantage thereof is a possibility of a dramatic reduction of computational expenses associated with computer-aided design procedures, especially those relying on full-wave electromagnetic (EM) simulations. In particular, the employment of...
-
Machine learning-based prediction of seismic limit-state capacity of steel moment-resisting frames considering soil-structure interaction
PublicationRegarding the unpredictable and complex nature of seismic excitations, there is a need for vulnerability assessment of newly constructed or existing structures. Predicting the seismic limit-state capacity of steel Moment-Resisting Frames (MRFs) can help designers to have a preliminary estimation and improve their views about the seismic performance of the designed structure. This study improved data-driven decision techniques in...