Filters
total: 2566
filtered: 1936
-
Catalog
Chosen catalog filters
displaying 1000 best results Help
Search results for: DISTRIBUTED MACHINE LEARNING
-
Analysis of pedestrian activity before and during COVID-19 lockdown, using webcam time-lapse from Cracow and machine learning
Publication -
Determinants of anxiety levels among young males in a threat of experiencing military conflict–Applying a machine-learning algorithm in a psychosociological study
Publication -
Solubility Characteristics of Acetaminophen and Phenacetin in Binary Mixtures of Aqueous Organic Solvents: Experimental and Deep Machine Learning Screening of Green Dissolution Media
PublicationThe solubility of active pharmaceutical ingredients is a mandatory physicochemical characteristic in pharmaceutical practice. However, the number of potential solvents and their mixtures prevents direct measurements of all possible combinations for finding environmentally friendly, operational and cost-effective solubilizers. That is why support from theoretical screening seems to be valuable. Here, a collection of acetaminophen...
-
Machine learning-based prediction of residual drift and seismic risk assessment of steel moment-resisting frames considering soil-structure interaction
PublicationNowadays, due to improvements in seismic codes and computational devices, retrofitting buildings is an important topic, in which, permanent deformation of buildings, known as Residual Interstory Drift Ratio (RIDR), plays a crucial role. To provide an accurate yet reliable prediction model, 32 improved Machine Learning (ML) algorithms were considered using the Python software to investigate the best method for estimating Maximum...
-
Prediction of maximum tensile stress in plain-weave composite laminates with interacting holes via stacked machine learning algorithms: A comparative study
PublicationPlain weave composite is a long-lasting type of fabric composite that is stable enough when being handled. Open-hole composites have been widely used in industry, though they have weak structural performance and complex design processes. An extensive number of material/geometry parameters have been utilized for designing these composites, thereby an efficient computational tool is essential for that purpose. Different Machine Learning...
-
Machine-learning-based precise cost-efficient NO2 sensor calibration by means of time series matching and global data pre-processing
PublicationAir pollution remains a considerable contemporary challenge affecting life quality, the environment, and economic well-being. It encompasses an array of pollutants—gases, particulate matter, biological molecules—emanating from sources such as vehicle emissions, industrial activities, agriculture, and natural occurrences. Nitrogen dioxide (NO2), a harmful gas, is particularly abundant in densely populated urban areas. Given its...
-
Statistical Data Pre-Processing and Time Series Incorporation for High-Efficacy Calibration of Low-Cost NO2 Sensor Using Machine Learning
PublicationAir pollution stands as a significant modern-day challenge impacting life quality, the environment, and the economy. It comprises various pollutants like gases, particulate matter, biological molecules, and more, stemming from sources such as vehicle emissions, industrial operations, agriculture, and natural events. Nitrogen dioxide (NO2), among these harmful gases, is notably prevalent in densely populated urban regions. Given...
-
Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen
PublicationDeep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental...
-
Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen
PublicationDeep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental...
-
Exploration of the Solubility Hyperspace of Selected Active Pharmaceutical Ingredients in Choline- and Betaine-Based Deep Eutectic Solvents: Machine Learning Modeling and Experimental Validation
PublicationDeep eutectic solvents (DESs) are popular green media used for various industrial, pharmaceutical, and biomedical applications. However, the possible compositions of eutectic systems are so numerous that it is impossible to study all of them experimentally. To remedy this limitation, the solubility landscape of selected active pharmaceutical ingredients (APIs) in choline chloride- and betaine-based deep eutectic solvents was...
-
Rediscovering Automatic Detection of Stuttering and Its Subclasses through Machine Learning—The Impact of Changing Deep Model Architecture and Amount of Data in the Training Set
PublicationThis work deals with automatically detecting stuttering and its subclasses. An effective classification of stuttering along with its subclasses could find wide application in determining the severity of stuttering by speech therapists, preliminary patient diagnosis, and enabling communication with the previously mentioned voice assistants. The first part of this work provides an overview of examples of classical and deep learning...
-
Comparative study on total nitrogen prediction in wastewater treatment 1 plant and effect of various feature selection methods on machine learning algorithms performance
PublicationWastewater characteristics prediction in wastewater treatment plants (WWTPs) is valuable and can reduce the number of sampling, energy, and cost. Feature Selection (FS) methods are used in the pre-processing section for enhancing the model performance. This study aims to evaluate the effect of seven different FS methods (filter, wrapper, and embedded methods) on enhancing the prediction accuracy for total nitrogen (TN) in the WWTP...
-
Lead-free bismuth-based perovskites coupled with g–C3N4: A machine learning based novel approach for visible light induced degradation of pollutants
PublicationThe use of metal halide perovskites in photocatalytic processes has been attempted because of their unique optical properties. In this work, for the first time, Pb-free Bi-based perovskites of the Cs3Bi2X9 type (X = Cl, Br, I, Cl/Br, Cl/I, Br/I) were synthesized and subjected to comprehensive morphological, structural, and surface analyses, and photocatalytic properties in the phenol degradation reaction were examined. Furthermore,...
-
High-Performance Machine-Learning-Based Calibration of Low-Cost Nitrogen Dioxide Sensor Using Environmental Parameter Differentials and Global Data Scaling
PublicationAccurate tracking of harmful gas concentrations is essential to swiftly and effectively execute measures that mitigate the risks linked to air pollution, specifically in reducing its impact on living conditions, the environment, and the economy. One such prevalent pollutant in urban settings is nitrogen dioxide (NO2), generated from the combustion of fossil fuels in car engines, commercial manufacturing, and food processing. Its...
-
Integrating Statistical and Machine‐Learning Approach for Meta‐Analysis of Bisphenol A‐Exposure Datasets Reveals Effects on Mouse Gene Expression within Pathways of Apoptosis and Cell Survival
PublicationBisphenols are important environmental pollutants that are extensively studied due to different detrimental effects, while the molecular mechanisms behind these effects are less well understood. Like other environmental pollutants, bisphenols are being tested in various experimental models, creating large expression datasets found in open access storage. The meta‐analysis of such datasets is, however, very complicated for various...
-
Cleaner energy for sustainable future using hybrid photovoltaics-thermoelectric generators system under non-static conditions using machine learning based control technique
PublicationIn addition to the load demand, the temperature difference between the hot and cold sides of the thermoelectric generator (TEG) module determines the output power for thermoelectric generator systems. Maximum power point tracking (MPPT) control is needed to track the optimal global power point as operating conditions change. The growing use of electricity and the decline in the use of fossil fuels have sparked interest in photovoltaic-TEG...
-
Uczenie maszynowe do samoorganizacji systemów rozproszonych w zastosowaniach gospodarczych
PublicationW pracy omówiono uczenie maszynowe do samoorganizacji systemów rozproszonych w zastosowaniach gospodarczych ze szczególnym uwzględnieniem sieci neuronowych do predykcji finansowych oraz szacowania ratingu przedsiębiorstw. Oprócz sieci neuronowych, istotną rolę w przygotowaniu i testowaniu informatycznych systemów finansowych może pełnić programowanie genetyczne. Z tego powodu omówiono uczenie maszynowe w aplikacjach konstruowanych...
-
Cooperative control in production and logistics
PublicationClassical applications of control engineering and information and communication technology (ICT) in production and logistics are often done in a rigid, centralized and hierarchical way. These inflexible approaches are typically not able to cope with the complexities of the manufacturing environment, such as the instabilities, uncertainties and abrupt changes caused by internal and external disturbances, or a large number and variety...
-
Kernel PCA in Application to Leakage Detection in Drinking Water Distribution System
PublicationMonitoring plays an important role in advanced control of complex dynamic systems. Precise information about system's behaviour, including faults detection, enables efficient control. Proposed method- Kernel Principal Component Analysis (KPCA), a representative of machine learning, skilfully takes full advantage of the well known PCA method and extends its application to nonlinear case. The paper explains the general idea of KPCA...
-
How Can We Identify Electrophysiological iEEG Activities Associated with Cognitive Functions?
PublicationElectrophysiological activities of the brain are engaged in its various functions and give rise to a wide spectrum of low and high frequency oscillations in the intracranial EEG (iEEG) signals, commonly known as the brain waves. The iEEG spectral activities are distributed across networks of cortical and subcortical areas arranged into hierarchical processing streams. It remains a major challenge to identify these activities in...
-
Rapid Multi-Criterial Antenna Optimization by Means of Pareto Front Triangulation and Interpolative Design Predictors
PublicationModern antenna systems are designed to meet stringent performance requirements pertinent to both their electrical and field properties. The objectives typically stay in conflict with each other. As the simultaneous improvement of all performance parameters is rarely possible, compromise solutions have to be sought. The most comprehensive information about available design trade-offs can be obtained through multi-objective optimization...
-
Resource productivity and environmental degradation in EU-27 countries: context of material footprint
PublicationThis study explores the relationship between the resource productivity and environmental degradation in European Union-27 countries. This study tests this relationship in context of high, moderate, and low material footprint sub-samples; these samples are formed utilizing the expectation–maximization machine learning algorithm. Using the panel data set of EU-27 countries from 2000 to 2020, linear and non-linear autoregressive distributed...
-
Multi-criteria Differential Evolution for Optimization of Virtual Machine Resources in Smart City Cloud
PublicationIn a smart city, artificial intelligence tools support citizens and urban services. From the user point of view, smart applications should bring computing to the edge of the cloud, closer to citizens with short latency. However, from the cloud designer point of view, the trade-off between cost, energy and time criteria requires the Pareto solutions. Therefore, the proposed multi-criteria differential evolution can optimize virtual...
-
Using LSTM networks to predict engine condition on large scale data processing framework
PublicationAs the Internet of Things technology is developing rapidly, companies have an ability to observe the health of engine components and constructed systems through collecting signals from sensors. According to output of IoT sensors, companies can build systems to predict the conditions of components. Practically the components are required to be maintained or replaced before the end of life in performing their assigned task. Predicting...
-
Akustyczna analiza parametrów ruchu drogowego z wykorzystaniem informacji o hałasie oraz uczenia maszynowego
PublicationCelem rozprawy było opracowanie akustycznej metody analizy parametrów ruchu drogowego. Zasada działania akustycznej analizy ruchu drogowego zapewnia pasywną metodę monitorowania natężenia ruchu. W pracy przedstawiono wybrane metody uczenia maszynowego w kontekście analizy dźwięku (ang.Machine Hearing). Przedstawiono metodologię klasyfikacji zdarzeń w ruchu drogowym z wykorzystaniem uczenia maszynowego. Przybliżono podstawowe...
-
Przegląd metod szybkiego prototypowania algorytmów uczenia maszynowego w FPGA
PublicationW artykule opisano możliwe do wykorzystania otwarte narzędzia wspomagające szybkie prototypowanie algorytmów uczenia maszynowego (ML) i sztucznej inteligencji (AI) przy użyciu współczesnych platform FPGA. Przedstawiono przykład szybkiej ścieżki przy realizacji toru wideo wraz z implementacją przykładowego algorytmu prze-twarzania w trybie na żywo.
-
Klasyfikator SVM w zastosowaniu do synchronizacji sygnału OFDM zniekształconego przez kanał wielodrogowy
PublicationW pracy przedstawiono analizę przydatności klasyfikatora SVM bazującego na uczeniu maszynowym do estymacji przesunięcia czasowego odebranego symbolu OFDM. Przedstawione wyniki wykazują, że ten klasyfikator potrafi zapewnić synchronizację dla różnych kanałów wielodrogowych o wysokim poziomie szumu. Eksperymenty przeprowadzone w Matlabie z użyciem modeli modulatora i demodulatora wykazały, że w większości przypadków klasyfikator...
-
Diagnostyka łożysk silnika indukcyjnego na podstawie prądu zasilającego przy użyciu sztucznych sieci neuronowych
PublicationW artykule zawarto wyniki badań dotyczące diagnostyki łożysk silnika indukcyjnego na podstawie pomiarów prądu zasilającego z wyko-rzystaniem sztucznych sieci neuronowych. Zaprezentowano wyniki uczenia sieci oraz rezultaty testów przeprowadzonych na danych spoza zbioru uczącego. Badania wykonane zostały na obiektach z celowo wprowadzonymi uszkodzeniami łożysk. Przedstawiona nowa koncepcja zakłada użycie zestawu sieci neuronowych...
-
Adaptacyjny system oświetlania dróg oraz inteligentnych miast
PublicationPrzedmiotem rozprawy jest zbadanie praktycznej możliwości wykrywania w czasie rzeczywistym anomalii w systemie oświetlenia drogowego w oparciu o analizę danych ze inteligentnych liczników energii. Zastosowanie inteligentnych liczników energii elektrycznej (Smart Meter) w systemach oświetlenia drogowego stwarza nowe możliwości w zakresie automatycznej diagnostyki takich niepożądanych zjawisk jak awarie lamp, odstępstwa od harmonogramu...
-
Distributed graph searching with a sense of direction
PublicationIn this work we consider the edge searching problem for vertex-weighted graphs with arbitrarily fast and invisible fugitive. The weight function w provides for each vertex v the minimum number of searchers required to guard v, i.e., the fugitive may not pass through v without being detected only if at least w(v) searchers are present at v. This problem is a generalization of the classical edge searching problem, in which one has...
-
Axial-Flux Permanent-Magnet Dual-Rotor Generator for a Counter-Rotating Wind Turbine
PublicationCoaxial counter-rotating propellers have been widely applied in ships and helicopters for improving the propulsion efficiency and offsetting system reactive torques. Lately, the counter-rotating concept has been introduced into the wind turbine design. Distributed wind power generation systems often require a novel approach in generator design. In this paper, prototype development of axial-flux generator with a counter-rotating...
-
Halucynacje chatbotów a prawda: główne nurty debaty i ich interpretacje
PublicationGeneratywne systemy sztucznej inteligencji (SI) są w stanie tworzyć treści medialne poprzez zastosowanie uczenia maszynowego do dużych ilości danych szkoleniowych. Te nowe dane mogą obejmować tekst (np. Bard firmy Google, LLaMa firmy Meta lub ChatGPT firmy OpenAI) oraz elementy wizualne (np. Stable Diffusion lub DALL-E OpenAI) i dźwięk (np. VALL-E firmy Micro- soft). Stopień zaawansowania tych treści może czynić je nieodróżnialnymi...
-
Adaptacyjny system sterowania ruchem drogowym
PublicationAdaptacyjny system sterowania ruchem drogowym to rodzaj systemu sterowania, który dynamicznie, w czasie rzeczywistym, dostosowuje swoje parametry w oparciu o bieżące warunki ruchu drogowego. Celem niniejszej rozprawy jest sprawdzenie wpływu wybranych cech systemu, zbudowanego w oparciu o zaprojektowane i zbudowane z udziałem autora inteligentne znaki drogowe, na wybrane parametry mające wpływ na bezpieczeństwo i płynność ruchu....
-
Deep Learning
PublicationDeep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...
-
Deep Learning: A Case Study for Image Recognition Using Transfer Learning
PublicationDeep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...
-
MACHINE VISION DETECTION OF THE CIRCULAR SAW VIBRATIONS
PublicationDynamical properties of rotating circular saw blades are crucial for both production quality and personnel safety. This paper presents a novel method for monitoring circular saw vibrations and deviations. A machine vision system uses a camera and a laser line projected on the saw’s surface to estimate vibration range. Changes of the dynamic behaviour of the saw were measured as a function of the rotational speed. The critical rotational...
-
Deep learning in the fog
PublicationIn the era of a ubiquitous Internet of Things and fast artificial intelligence advance, especially thanks to deep learning networks and hardware acceleration, we face rapid growth of highly decentralized and intelligent solutions that offer functionality of data processing closer to the end user. Internet of Things usually produces a huge amount of data that to be effectively analyzed, especially with neural networks, demands high...
-
Transient modeling in common DC link of power converters
PublicationПредмет исследования. Представлена математическая модель силовых преобразователей электропривода, питающихся от общего звена постоянного тока, на примере тяговых электроприводов карьерного самосвала БЕЛАЗ-90 мощностью 280 кВт. Модель выполнена в пакете MATLAB/Simulink. Новизна предложенной модели заключается в применении новой топологии силовой схемы для исследования работы двух инверторов, под- ключенных к одному звену постоянного...
-
Federated Learning in Healthcare Industry: Mammography Case Study
PublicationThe paper focuses on the role of federated learning in a healthcare environment. The experimental setup involved different healthcare providers, each with their datasets. A comparison was made between training a deep learning model using traditional methods, where all the data is stored in one place, and using federated learning, where the data is distributed among the workers. The experiment aimed to identify possible challenges...
-
Distributed VoIP telecommunication system
PublicationIn the paper a distributed VoIP telecommunication system architecture with load balancing is described. Important features of this architecture are the high level of system reliability and the possibility of using lowcost hardware solutions.
-
Distributed representation of information on cyclic events
PublicationA representation of information on cyclic events has been proposed which is advantageous for computing environments where a distributed set of Receivers reacts to cyclic events generated by distributed sources. In such scenario no immanent central information repository exist on event timing or volume. Receivers are able to learn the event cycles without communicating with each other, merely on the basis of the fact that an event...
-
Lifelong Learning Idea in Architectural Education
PublicationThe recent advances in IT and technology are forcing changes in the approach to educating society. In the 20th century, life-long learning was understood as educating adults in order to improve their occupational qualifications. Life-long learning allows the needs of the present-day world to be addressed through providing the individual with education at every stage of his/her life various forms. The search for a new model...
-
Modelling of Mechatronic Systems with Distributed Parameter Components
PublicationThe paper presents an uniform, port-based approach to modelling of both lumped and distributed parameter systems. Port-based model of distributed system has been defined by application of the bond graph methodology and the distributed transfer function method (DTFM). The proposed method of modelling enables to formulate input data for computer analysis by application of the DTFM. The computational package for the analysis of complex...
-
Port-based approach to distributed transfer function method
PublicationIn the paper there is presented an uniform, port-based approach to modeling of both lumped and distributed parameter systems. Port-based model of distributed system has been defined by application of distributed transfer function method (DTFM). The approach proposed combines versatility of port - based modeling and accuracy of distributed transfer function method. It enables to formulate appropriate input data for computer analysis...
-
Knowledge sharing and knowledge hiding in light of the mistakes acceptance component of learning culture- knowledge culture and human capital implications
PublicationPurpose: This study examines the micromechanisms of how knowledge culture fosters human capital development. Method: An empirical model was developed using the structural equation modeling method (SEM) based on a sample of 321 Polish knowledge workers employed in different industries. Findings: This study provides direct empirical evidence that tacit knowledge sharing supports human capital, whereas tacit knowledge hiding does...
-
Port-Based Modelling of Distributed-Lumped Parameter Systems
PublicationThere in the paper is presented an uniform, port-based approach to modelling of both lumped and distributed parameter systems. Port-based model of the distributed system has been defined by application of bond graph methodology and distributed transfer function method (DTFM). The approach proposed combines versatility of port-based modelling and accuracy of distributed transfer function method. The concise representation of lumped-distributed...
-
Identyfikacja instrumentu muzycznego z nagrania fonicznego za pomocą sztucznych sieci neuronowych
PublicationCelem rozprawy jest zbadanie algorytmów do identyfikacji instrumentów występujących w sygnale polifonicznym z wykorzystaniem sztucznych sieci neuronowych. W części teoretycznej przywołano podstawy przetwarzania sygnałów fonicznych w kontekście ekstrakcji parametrów sygnałów wykorzystywanych w treningu sieci neuronowych. Dodatkowo dokonano analizy rozwoju metod uczenia maszynowego z uwzględnieniem podziału na sieci neuronowe pierwszej,...
-
MANAGING LEARNING PROCESS WITH E-LEARNING TOOL
PublicationThis article presents one possibility to employ Moodle, the free e-Leaning platform, to organize learning understood as a process. Behavioral approach and application to massive courses are assumed. A case study is presented, where the introduction of Moodle resulted in better student performance in homework
-
Model-free and Model-based Reinforcement Learning, the Intersection of Learning and Planning
PublicationMy doctoral dissertation is intended as the compound of four publications considering: structure and randomness in planning and reinforcement learning, continuous control with ensemble deep deterministic policy gradients, toddler-inspired active representation learning, and large-scale deep reinforcement learning costs.
-
Blended Learning Model for Computer Techniques for Students of Architecture
PublicationAbstract: The article summarizes two-year experience of implementing hybrid formula for teaching Computer Techniques at the Faculty of Architecture at the Gdansk University of Technology. Original educational e-materials, consisting of video clips, text and graphics instructions, as well as links to online resources are embedded in the university e-learning educational platform. The author discusses technical constraints associated...