Filters
total: 1297
filtered: 949
-
Catalog
Chosen catalog filters
Search results for: LEARNING
-
WEB-CAM AS A MEANS OF INFORMATION ABOUT EMOTIONAL ATTEMPT OF STUDENTS IN THE PROCESS OF DISTANT LEARNING
PublicationNew methods in education become more popular nowadays. Distant learning is a good example when teacher and student meet in virtual environment. Because interaction in this virtual world might be complicated it seems necessary to assure as much methods of conforming that student is still engaged in the process of learning as it is possible. We would like to present assumption that by means of web-cam we will be able to track facial...
-
Deep learning techniques for biometric security: A systematic review of presentation attack detection systems
PublicationBiometric technology, including finger vein, fingerprint, iris, and face recognition, is widely used to enhance security in various devices. In the past decade, significant progress has been made in improving biometric sys- tems, thanks to advancements in deep convolutional neural networks (DCNN) and computer vision (CV), along with large-scale training datasets. However, these systems have become targets of various attacks, with...
-
Analyzing the relationship between sound, color, and emotion based on subjective and machine-learning approaches
PublicationThe aim of the research is to analyze the relationship between sound, color, and emotion. For this purpose, a survey application was prepared, enabling the assignment of a color to a given speaker’s/singer’s voice recordings. Subjective tests were then conducted, enabling the respondents to assign colors to voice/singing samples. In addition, a database of voice/singing recordings of people speaking in a natural way and with expressed...
-
Reinforcement Learning Algorithm and FDTD-based Simulation Applied to Schroeder Diffuser Design Optimization
PublicationThe aim of this paper is to propose a novel approach to the algorithmic design of Schroeder acoustic diffusers employing a deep learning optimization algorithm and a fitness function based on a computer simulation of the propagation of acoustic waves. The deep learning method employed for the research is a deep policy gradient algorithm. It is used as a tool for carrying out a sequential optimization process the goal of which is...
-
User -friendly E-learning Platform: a Case Study of a Design Thinking Approach Use
PublicationE-learning systems are very popular means to support the teaching process today. These systems are mainly used by universities as well as by commercial training centres. We analysed several popular e-learning platforms used in Polish universities and find them very unfriendly for the users. For this reason, the authors began the work on the creation of a new system that would be not only useful, but also usable for students, teachers...
-
Fusion-based Representation Learning Model for Multimode User-generated Social Network Content
PublicationAs mobile networks and APPs are developed, user-generated content (UGC), which includes multi-source heterogeneous data like user reviews, tags, scores, images, and videos, has become an essential basis for improving the quality of personalized services. Due to the multi-source heterogeneous nature of the data, big data fusion offers both promise and drawbacks. With the rise of mobile networks and applications, UGC, which includes...
-
Analysis of the Capability of Deep Learning Algorithms for EEG-based Brain-Computer Interface Implementation
PublicationMachine learning models have received significant attention for their exceptional performance in classifying electroencephalography (EEG) data. They have proven to be highly effective in extracting intricate patterns and features from the raw signal data, thereby contributing to their success in EEG classification tasks. In this study, we explore the possibilities of utilizing contemporary machine learning algorithms in decoding...
-
A machine learning approach to classifying New York Heart Association (NYHA) heart failure
PublicationAccording to the European Society of Cardiology, globally the number of patients with heart failure nearly doubled from 33.5 million in 1990 to 64.3 million in 2017, and is further projected to increase dramatically in this decade, still remaining a leading cause of morbidity and mortality. One of the most frequently applied heart failure classification systems that physicians use is the New York Heart Association (NYHA) Functional...
-
Strategic Flexibility as a Mediator in Relationship between Managerial Decisions and Organizational Learning: Ambidexterity Perspective
PublicationPurpose: The purpose of the article is to determine strategic flexibility in the relationship between managerial decisions and organizational learning. The analyses are conducted in the ambidexterity convection. Design/Methodology/Approach: The study was conducted at a textile company. The company is a leader in the textile recycling industry in Poland. Empirical data were collected using the PAPI technique. The survey questionnaire...
-
Perspektywy wykorzystania technologii internetowych typu E-learning w dydaktyce szkół wyższych.
PublicationArtykuł dotyczy nauczania przez Internet na poziomie uniwersyteckim. Zaprezentowany został model wirtualnego uniwersytetu, który obejmuje materiały dydaktyczne, komunikację, egzaminy i organizację. Artykuł koncentruje się na technicznych zagadnieniach. Przeanalizowano także wpływ wykorzystania technologii E-learning na różne aspekty życia wyższej uczelni.
-
Optimizing Medical Personnel Speech Recognition Models Using Speech Synthesis and Reinforcement Learning
PublicationText-to-Speech synthesis (TTS) can be used to generate training data for building Automatic Speech Recognition models (ASR). Access to medical speech data is because it is sensitive data that is difficult to obtain for privacy reasons; TTS can help expand the data set. Speech can be synthesized by mimicking different accents, dialects, and speaking styles that may occur in a medical language. Reinforcement Learning (RL), in the...
-
Forewarned Is Forearmed: Machine Learning Algorithms for the Prediction of Catheter-Induced Coronary and Aortic Injuries
PublicationCatheter-induced dissections (CID) of coronary arteries and/or the aorta are among the most dangerous complications of percutaneous coronary procedures, yet the data on their risk factors are anecdotal. Logistic regression and five more advanced machine learning techniques were applied to determine the most significant predictors of dissection. Model performance comparison and feature importance ranking were evaluated. We identified...
-
An Adaptive Network Model for a Double Bias Perspective on Learning from Mistakes within Organizations
PublicationAlthough making mistakes is a crucial part of learning, it is still often being avoided in companies as it is considered as a shameful incident. This goes hand in hand with a mindset of a boss who dominantly believes that mistakes usually have negative consequences and therefore avoids them by only accepting simple tasks. Thus, there is no mechanism to learn from mistakes. Employees working for and being influenced by such a boss...
-
Automated detection of pronunciation errors in non-native English speech employing deep learning
PublicationDespite significant advances in recent years, the existing Computer-Assisted Pronunciation Training (CAPT) methods detect pronunciation errors with a relatively low accuracy (precision of 60% at 40%-80% recall). This Ph.D. work proposes novel deep learning methods for detecting pronunciation errors in non-native (L2) English speech, outperforming the state-of-the-art method in AUC metric (Area under the Curve) by 41%, i.e., from...
-
Fast Machine-Learning-Enabled Size Reduction of Microwave Components Using Response Features
PublicationAchieving compact size has emerged as a key consideration in modern microwave design. While structural miniaturization can be accomplished through judicious circuit architecture selection, precise parameter tuning is equally vital to minimize physical dimensions while meeting stringent performance requirements for electrical characteristics. Due to the intricate nature of compact structures, global optimization is recommended,...
-
Road traffic can be predicted by machine learning equally effectively as by complex microscopic model
PublicationSince high-quality real data acquired from selected road sections are not always available, a traffic control solution can use data from software traffic simulators working offline. The results show that in contrast to microscopic traffic simulation, the algorithms employing neural networks can work in real-time, so they can be used, among others, to determine the speed displayed on variable message road signs. This paper describes...
-
Feature Reduction Using Similarity Measure in Object Detector Learning with Haar-like Features
PublicationThis paper presents two methods of training complexity reduction by additional selection of features to check in object detector training task by AdaBoost training algorithm. In the first method, the features with weak performance at first weak classifier building process are reduced based on a list of features sorted by minimum weighted error. In the second method the feature similarity measures are used to throw away that features...
-
Machine Learning and Text Analysis in an Artificial Intelligent System for the Training of Air Traffic Controllers
PublicationThis chapter presents the application of new information technology in education for the training of air traffic controllers (ATCs). Machine learning, multi-criteria decision analysis, and text analysis as the methods of artificial intelligence for ATCs training have been described. The authors have made an analysis of the International Civil Aviation Organization documents for modern principles of ATCs education. The prototype...
-
COVID-19 severity forecast based on machine learning and complete blood count data
PublicationProper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose...
-
COVID-19 severity forecast based on machine learning and complete blood count data
PublicationProper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose...
-
Transformational Leadership and Acceptance of Mistakes as a Source of Learning: Poland-USA Cross-Country Study
PublicationThis study explores the influence of transformational leadership on internal innovativeness mediated by mistakes acceptance, including country and industry as factors to be considered and gender and risk-taking attitude as moderators. General findings, primarily based on the US samples (healthcare, construction, and IT industry), confirmed that transformational leadership and internal innovativeness are mediated by mistakes acceptance...
-
Enhancing environmental literacy through urban technology-based learning. The PULA app case
PublicationThis study addresses the need to enhance environmental literacy, focusing on urban adults through mobile applications, based on the example of PULA app that engages early adopters in gamified pro- environmental activities, offering insights into informal learning. Grounded in 'urban pedagogy,' the study combines semi-structured interviews with 17 application testers and quantitative data analysis, unveiling motivations, user feedback,...
-
Data-Driven Surrogate-Assisted Optimization of Metamaterial-Based Filtenna Using Deep Learning
PublicationIn this work, a computationally efficient method based on data driven surrogate models is pro-posed for the design optimization procedure of a Frequency Selective Surface (FSS)-based filtering antenna (Filtenna). A Filtenna acts as a as module that simultaneously pre-filters unwanted sig-nals, and enhances the desired signals at the operating frequency. However, due to a typically large number of design variables of FSS unit elements,...
-
Detection of circulating tumor cells by means of machine learning using Smart-Seq2 sequencing
PublicationCirculating tumor cells (CTCs) are tumor cells that separate from the solid tumor and enter the bloodstream, which can cause metastasis. Detection and enumeration of CTCs show promising potential as a predictor for prognosis in cancer patients. Furthermore, single-cells sequencing is a technique that provides genetic information from individual cells and allows to classify them precisely and reliably. Sequencing data typically...
-
Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures
PublicationMany studies have been performed to put quantifying uncertainties into the seismic risk assessment of reinforced concrete (RC) buildings. This paper provides a risk-assessment support tool for purpose of retrofitting and potential design strategies of RC buildings. Machine Learning (ML) algorithms were developed in Python software by innovative methods of hyperparameter optimization, such as halving search, grid search, random...
-
Machine-learning methods for estimating compressive strength of high-performance alkali-activated concrete
PublicationHigh-performance alkali-activated concrete (HP-AAC) is acknowledged as a cementless and environmentally friendly material. It has recently received a substantial amount of interest not only due to the potential it has for being used instead of ordinary concrete but also owing to the concerns associated with climate change, sustainability, reduction of CO2 emissions, and energy consumption. The characteristics and amounts of the...
-
Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android Malware Detection
PublicationDue to the exponential rise of mobile technology, a slew of new mobile security concerns has surfaced recently. To address the hazards connected with malware, many approaches have been developed. Signature-based detection is the most widely used approach for detecting Android malware. This approach has the disadvantage of being unable to identify unknown malware. As a result of this issue, machine learning (ML) for detecting malware...
-
Detection of circulating tumor cells by means of machine learning using Smart-Seq2 sequencing
Publication -
COMPARATIVE ANALYSIS OF COPING STRATEGIES WITH STRESS OF STUDENTS IN DIFFERENT LEARNING CONDITIONS DURING THE PANDEMIC
Publication -
Urban Food Self-Production in the Perspective of Social Learning Theory: Empowering Self-Sustainability
PublicationUrban food production is becoming an increasingly significant topic in the context of climate change and food security. Conducting research on this subject is becoming an essential element of urban development, deepening knowledge regarding the benefits, challenges, and potential for the development of urban agriculture as an alternative form of food production. Responding to this need, this monograph presents the results of...
-
DentalSegmentator: Robust open source deep learning-based CT and CBCT image segmentation
Publication -
Machine learning goes global: Cross-sectional return predictability in international stock markets
Publication -
Experimental Evaluation of the Agent-Based Population Learning Algorithm for the Cluster-Based Instance Selection
Publication -
Open source learning management systems at civil engineering and environmental department: TeleCAD and Moodle.
PublicationW rozdziale zaprezentowano dwa systemy zarządzania kształceniem, służące do przygotowania i prowadzenia e-kursów. Pierwszy z nich TeleCAD został opracowany w ramach projektu Leonardo da Vinci (1998-2001). Ostanie użycie systemu miało miejsce w roku akademickim 2003/2004 i był on wykorzystany w projekcie CURE (V Program Ramowy, 2003-2006). W roku 2003 dzięki wsparciu projektu Leonardo da Vinci EMDEL (2001-2005) Centrum Edukacji...
-
E-LEARNING NA POLITECHNICE GDAŃSKIEJ - HISTORIA ROZWOJU W LATACH 1995-2020
PublicationInternet oraz kształcenie oparte na wykorzystaniu e-technologii stały się nieodłącznym elementem edukacji. Artykuł przedstawia zarys historii rozwoju e-learningu na Politechnice Gdańskiej, przykładowe rozwiązania technologiczne, elementy tworzenia struktur organizacyjnych oraz związanych z legislacją, a także wybrane projekty wykorzystujące szeroko pojęte e-technologie w edukacji akademickiej realizowanej na Uczelni
-
Prediction of Sorption Processes Using the Deep Learning Methods (Long Short-Term Memory)
Publication -
Deep learning model for automated assessment of lexical stress of non-native english speakers
Publication -
Machine Learning for Control Systems Security of Industrial Robots: a Post-covid-19 Overview
Publication -
The Effectiveness of Using a Pretrained Deep Learning Neural Networks for Object Classification in Underwater Video
Publication -
Edu Inspiracje WZiE: Active Learning, czyli o mocy aktywnego przetwarzania informacji
Publication -
Machine Learning Methods in Damage Prediction of Masonry Development Exposed to the Industrial Environment of Mines
Publication -
Advances in Architectures, Big Data, and Machine Learning Techniques for Complex Internet of Things Systems
PublicationTe feld of Big Data is rapidly developing with a lot of ongoing research, which will likely continue to expand in the future. A crucial part of this is Knowledge Discovery from Data (KDD), also known as the Knowledge Discovery Process (KDP). Tis process is a very complex procedure, and for that reason it is essential to divide it into several steps (Figure 1). Some authors use fve steps to describe this procedure, whereas others...
-
Wireless Link Selection Methods for Maritime Communication Access Networks—A Deep Learning Approach
PublicationIn recent years, we have been witnessing a growing interest in the subject of communication at sea. One of the promising solutions to enable widespread access to data transmission capabilities in coastal waters is the possibility of employing an on-shore wireless access infrastructure. However, such an infrastructure is a heterogeneous one, managed by many independent operators and utilizing a number of different communication...
-
Sperm segmentation and abnormalities detection during the ICSI procedure using machine learning algorithms
Publication(1) About 15-20% of couples struggle with the problem of infertility. 30 to 40% of these cases are caused by abnormalities in the structure and motility of sperm. Sometimes the only possibility for such people is to use the procedure of artificial insemination. CASA systems are used to increase the efficiency of this procedure by selecting the appropriate sperm cell. (2) This paper presents an approach to the sperm classification...
-
From Data to Decision: Interpretable Machine Learning for Predicting Flood Susceptibility in Gdańsk, Poland
PublicationFlood susceptibility prediction is complex due to the multifaceted interactions among hydrological, meteorological, and urbanisation factors, further exacerbated by climate change. This study addresses these complexities by investigating flood susceptibility in rapidly urbanising regions prone to extreme weather events, focusing on Gdańsk, Poland. Three popular ML techniques, Support Vector Machine (SVM), Random Forest (RF), and...
-
Likelihood of Transformation to Green Infrastructure Using Ensemble Machine Learning Techniques in Jinan, China
Publication -
Computational Simulation of the Effects of Different Culture Types and Leader Qualities on Mistake Handling and Organisational Learning
PublicationThis chapter investigates computationally the following research hypotheses: (1) Higher flexibility and discretion in organisational culture results in better mistake management and thus better organisational learning, (2) Effective organisational learning requires a transformational leader to have both high social and formal status and consistency, and (3) Company culture and leader’s behavior must align for the best learning...
-
Supporting First Year Students Through Blended-Learning - Planning Effective Courses and Learner Support
PublicationHigher education has been actively encouraged to find more effective and flaxible delivery models to provide all students with access to good quality learning experiences. This paper describes students opinion about using e-learning techniques and their participation in courses provided in different ways as additional help and expectations of first year students.
-
Adaptive Dynamical Systems Modelling of Transformational Organizational Change with Focus on Organizational Culture and Organizational Learning
PublicationTransformative Organizational Change becomes more and more significant both practically and academically, especially in the context of organizational culture and learning. However computational modeling and a formalization of organizational change and learning processes are still largely unexplored. This paper aims to provide an adaptive network model of transformative organizational change and translate a selection of organizational...
-
Adaptive Dynamical Systems Modelling of Transformational Organizational Change: with Focus on Organizational Culture and Organizational Learning
PublicationTransformative Organizational Change becomes more and more significant both practically and academically, especially in the context of organizational culture and learning. However computational modeling and a formalization of organizational change and learning processes are still largely unexplored. This paper aims to provide an adaptive network model of transformative organizational change and translate a selection of organizational...