Filters
total: 512
filtered: 466
-
Catalog
Chosen catalog filters
Search results for: microwave engineering
-
A Novel Synthesis Technique for Microwave Bandpass Filters with Frequency-Dependent Couplings
PublicationThis paper presents a novel synthesis technique for microwave bandpass filters with frequency-dependent couplings. The proposed method is based on the systematic extraction of a dispersive coupling coefficient using an optimization technique based on the zeros and poles of scattering parameters representing two coupled resonators.The application of this method of synthesis is illustrated using two examples involving four and five-pole...
-
Developments in Green Chromatography
PublicationGreen analytical chemistry is a widely recognized concept that has led to the development of new analytical methods with reduced environmental impact and minimized analyst occupational exposure. Achievements include the development of microextraction, ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE) techniques. Research towards greener separation processes focuses on the elimination of toxic solvents...
-
Effect of microwave and convection heating on selected nutrients of human milk
PublicationThe aim of this study was to determine the influence of the microwave heating method (MWH) on selected determinants of the nutritional value of human milk (HM) and compare to the effect exerted by the standard convection heating (CH) method, including holder pasteurization (HoP). It was showed that using MWH under conditions assumed to ensure microbiological safety, changes in the level of the nutrients were not observed. In these...
-
Linear antenna microwave chemical vapour deposition of diamond films on long-period fiber gratings for bio-sensing applications
PublicationThe growth processes of nanocrystalline diamond (NCD) thin films on fused silica optical fibers with UV-induced long-period gratings (LPGs) were investigated with regard to biosensing applications. The films were deposited using a linear antenna microwave plasma enhanced chemical vapor deposition system, which allows for the growth of diamond at temperatures below 350°C. The films exhibited a high refractive index n = 2.32, as...
-
Nitrogen-Doped Diamond Film for Optical Investigation of Hemoglobin Concentration
PublicationIn this work we present the fabrication and characterization of a diamond film which can be utilized in the construction of optical sensors for the investigation of biological samples. We produced a nitrogen-doped diamond (NDD) film using a microwave plasma enhanced chemical vapor deposition (MWPECVD) system. The NDD film was investigated with the use of scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman...
-
Size Reduction of Microwave Couplers by EM-Driven Optimization
PublicationThis work addresses simulation-driven design optimization of compact microwave couplers that explicitly aims at circuit footprint area reduction. The penalty function approach allows us to minimize the area of the circuit while ensuring a proper power division between the output ports and providing a sufficient bandwidth with respect to return loss and isolation around the operating frequency. Computational cost of the optimization...
-
Application of thin diamond films in low-coherence fiber-optic Fabry Pérot displacement sensor
PublicationThe novel fiber-optic low coherence sensor with thin diamond films is demonstrated. The undoped and boron-doped diamond films were elaborated by the use of the microwave plasma enhanced chemical vapor deposition (μPE CVD) system. The optical signal from the Fabry–Pérot cavity made with the application of those thin films is sensitive to displacement. The sensor characterization was made in the range of 0–600 μm. The measurements...
-
Doped Nanocrystalline Diamond Films as Reflective Layers for Fiber-Optic Sensors of Refractive Index of Liquids
PublicationThis paper reports the application of doped nanocrystalline diamond (NCD) films—nitrogen-doped NCD and boron-doped NCD—as reflective surfaces in an interferometric sensor of refractive index dedicated to the measurements of liquids. The sensor is constructed as a Fabry–Pérot interferometer, working in the reflective mode. The diamond films were deposited on silicon substrates by a microwave plasma enhanced chemical vapor deposition...
-
Diamond Structures for Tuning of the Finesse Coefficient of Photonic Devices
PublicationFinesse coefficient is one of the most important parameters describing the properties of a resonant cavity. In this research, a mathematical investigation of the application of diamond structures in a fiber-optic Fabry–Perot measurement head to assess their impact on the finesse coefficient is proposed. We present modeled transmission functions of cavities utilizing a nitrogen-doped diamond, a boron-doped diamond, nanocrystalline...
-
Performance-Driven Surrogate Modeling of High-Frequency Structures
PublicationThe development of modern high-frequency structures, including microwave and antenna components, heavily relies on full-wave electromagnetic (EM) simulation models. Notwithstanding, EM-driven design entails considerable computational expenses. This is especially troublesome when solving tasks that require massive EM analyzes, parametric optimization and uncertainty quantification be-ing representative examples. The employment of...
-
Design centering of compact microwave components using response features and trust regions
PublicationFabrication tolerances, as well as uncertainties of other kinds, e.g., concerning material parameters or operating conditions, are detrimental to the performance of microwave circuits. Mitigating their impact requires accounting for possible parameter deviations already at the design stage. This involves optimization of appropriately defined statistical figures of merit such as yield. Alt-hough important, robust (or tolerance-aware)...
-
Local response surface approximations and variable-fidelity electromagnetic simulations for computationally efficient microwave design optimisation
PublicationIn this study, the authors propose a robust and computationally efficient algorithm for simulation-driven design optimisation of microwave structures. Our technique exploits variable-fidelity electromagnetic models of the structure under consideration. The low-fidelity model is optimised using its local response surface approximation surrogates. The high-fidelity model is refined by space mapping with polynomial interpolation of...
-
Rapid surrogate-assisted statistical analysis of compact microstrip couplers
PublicationIn this paper, a technique for low-cost statistical analysis and yield estimation of compact microwave couplers has been presented. The analysis is executed at the level of a fast surrogate model representing selected characteristic points of the coupler response that are critical to determine satisfaction/violation of the prescribed design specifications. Because of less nonlinear dependence of the characteristic points on geometry...
-
Charge-based deep level transient spectroscopy of B-doped and undoped polycrystalline diamond films
PublicationThe undoped and B-doped polycrystalline diamond thin film was synthesized by hot filament chemical vapor deposition and microwave plasma, respectively. The structural characterization was performed by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. The electrical properties of synthesized diamond layer were characterized by dc-conductivity method and charge deep level transient spectroscopy. The B-doped...
-
RAMAN DIAGNOSTICS OF CVD DIAMOND GROWTH
PublicationDevelopment of Raman spectroscopic system for diagnostics of growth of diamond and BDD (Boron- Doped-Diamond) thin films during μPA CVD (Microwave Plasma Assisted Chemical Vapour Deposition) process is described. Raman studies of such films were carried out as in-situ monitoring of film deposition as ex-situ measurements conducted for a sample outside the reaction vessel after manufacturing process. Modular system for the in-situ...
-
1,3,4-Thiadiazole-based diamides: Synthesis and complexation properties
PublicationAromatic diamides, derivative of 2,6-pyridinedicarboxylic acid and isophthalic acid, bearing 1,3,4-thiadiazole residue were prepared with satisfactory yields in conventional procedures and microwave stimulated reactions. X-ray structure of N,N-bis (1,3,4-thiadiazol-2-yl)-2,6-pyridinedicarboxamide (2) DMSO solvate (2DMSO) was described. Selective zinc(II), lanthanum(III), terbium(III) and L-tyrosine recognition was found for N,N-bis(1,3,4-thiadiazol-2-yl)-2,6-pyridinedicarboxamide...
-
A novel microstrip dual-layer rat-race coupler with compact size and enhanced bandwidth
PublicationMicrowave hybrid couplers are crucial components of mixers, phase shifters, amplifiers and other high-frequency systems. Conventional couplers are characterized by large size which limits their usefulness in modern applications. In this work, a novel compact rat-race coupler with enhanced bandwidth has been proposed. The structure consists of six compact microstrip resonant cells. It is implemented on two separate layers which permits...
-
Carnivorous plants used for green synthesis of silver nanoparticles with broad-spectrum antimicrobial activity
PublicationIn this study, we exploit the anti-oxidative potential of four carnivorous plants to produce uniform and biologically active silver nanoparticles. The use of polyvinylpyrrolidone promoted syn-thesis of quasi-spherical nanoparticles characterized by stability and high uniformity. Their activity was tested against three human pathogens and three species of plant pathogenic bacteria. The study demonstrates the influence of synthesis...
-
Inline Microwave Filters With N+1 Transmission Zeros Generated by Frequency-Variant Couplings: Coupling-Matrix-Based Synthesis and Design
PublicationA general coupling-matrix-based synthesis methodology for inline Nth-order microwave bandpass filters (BPFs) with frequency-variant reactive-type couplings that generate N+1 transmission zeros (TZs) is presented in this brief. The proposed approach exploits the formulation of the synthesis problem as three inverse nonlinear eigenvalue problems (INEVPs) so that the coupling matrix is built from their sets of eigenvalues. For this...
-
Highly sensitive microwave sensors based on open complementary square split-ring resonator for sensing liquid materials
PublicationThis paper presents high-sensitivity sensors based on open complementary square split-ring resonator and modified open complementary split-ring resonator operating at 4.5 GHz and 3.4 GHz, respectively. The sensors are designed for the detection of multiple liquid materials, including distilled water, methanol, and ethanol. The liquid under test is filled in a glass container loaded using a pipette. Compared to the conventional...
-
Uncertainty Quantification of Additive Manufacturing Post-Fabrication Tuning of Resonator-Based Microwave Sensors
PublicationReconfigurability, especially in terms of the ability of adjusting the operating frequency, has become an important prerequisite in the design of modern microwave components and systems. It is also pertinent to microwave sensors developed for a variety of applications such as characterization of material properties of solids or liquids. This paper discusses uncertainty quantification of additive-manufacturing-based post-fabrication...
-
Frequency-dependent coupling model for microwave band-pass filter
PublicationThe goal of this work was to create a circuit model which represents frequency-dependent coupling between microwave resonators. Our models are designed for in-line filters. The frequency-dependent coupling enables one to realize a transmission zero which is not possible in classical approach with frequency independent inverters. In addition, the proposed model allows us to observe out-of-band behavior, e.g. spurious resonance....
-
Determination of chemical oxygen demand (cod) at boron-doped diamond (bdd) sensor by means of amperometric technique
PublicationA boron-doped diamond (BDD) sensor was proposed for effective detection of chemical oxygen demand (COD) by means of amperometric technique. Thin boron doped diamond active sensor layer was deposited on Si wafer and glassy carbon substrate by Microwave Plasma Enhanced Chemical Vapor Deposition (MW PE CVD). The structure of BDD was confirmed by Raman spectra analysis. Broad Raman bands centered at 482 cm-1 and 1219 cm-1 are typical...
-
Inverse surrogate models for fast geometry scaling of miniaturized dual-band couplers
PublicationRe-design of microwave structures for various sets of performance specifications is a challenging task, particularly for compact components where considerable electromagnetic (EM) cross-couplings make the relationships between geometry parameters and the structure responses complex. Here, we address geometry scaling of miniaturized dual-band couplers by means of inverse surrogate modeling. Our approach allows for fast estimation...
-
The low coherence Fabry-Pérot interferometer with diamond and ZnO layers
PublicationThe authors present a fiber-optic Fabry-Pérot interferometer built with the application of diamond and zinc oxide (ZnO) thin layers. Thin ZnO films were deposited on the tip of a standard telecommunication single-mode optical fiber (SMF- 28) while the diamond layer was grown on the plate of silicon substrate. Investigated ZnO layers were fabricated by atomic layer deposition (ALD) and the diamond films were deposited using Microwave...
-
Rapid multi-objective design optimisation of compact microwave couplers by means of physics-based surrogates
PublicationThe authors introduce a methodology for fast multi-objective design optimisation of miniaturised microwave couplers. The approach exploits the surrogate-based optimisation paradigm with an underlying low-fidelity model constructed from an equivalent circuit of the structure under consideration, corrected through implicit and frequency space mapping. A fast prediction tool obtained this way is subsequently optimised by a multi-objective...
-
Low-cost EM-Simulation-based Multi-objective Design Optimization of Miniaturized Microwave Structures
PublicationIn this work, a simple yet reliable technique for fast multi-objective design optimization of miniaturized microwave structures is discussed. The proposed methodology is based on point-by-point identification of a Pareto-optimal set of designs representing the best possible trade-offs between conflicting objectives such as electrical performance parameters as well as the size of the structure of interest. For the sake of computational...
-
Deflated Preconditioned Solvers for Parametrized Local Model Order Reduction
PublicationOne of steps in the design of microwave filters is numerical tuning using full-wave simulators. Typically, it is a time-consuming process as it uses advanced computational methods, e.g. the finite-element method (FEM) and it usually requires multiple optimization steps before the specification goals are met. FEM involves solving a large sparse system of equations at many frequency points and therefore its computational cost is...
-
Effect of convection and microwave heating on the retention of bioactive components in human milk
PublicationBioactive substances are very important components of human milk (HM), especially for premature newborns. The effects of convection (CH) and microwave heating (MWH) at 62.5 and 66 °C, on the level of selected bioactive components of HM: lysozyme (LZ), lactoferrin (LF), secretory immunoglobulin A (sIgA), basal lipase (BL), cytokine TGF-2, vitamin C and total antioxidant capacity (TAC) was compared. Regardless of the used heating methods...
-
Fast Design Optimization of Waveguide Filters Applying Shape Deformation Techniques
PublicationThis paper presents an efficient design of microwave filters by means of geometry optimization using shape deformation techniques. This design procedure allows for modelling complex 3D geometries which can be fabricated by additive manufacturing (AM). Shape deforming operations are based on radial basis function (RBF) interpolation and are integrated into an electromagnetic field simulator based on the 3D finiteelement method (FEM)....
-
An ultrawideband monopulse feed with slant polarization for tracking radar systems
PublicationAn ultrawideband slant-polarized monopulse feed is designed and fabricated for microwave applications. The proposed configuration features four end-launched diagonal horns allowing for the production of sum and difference channels in two principal planes. The key advantage of this proposed monopulse antenna over traditional monopulse feeds is its ability to combine the benefits of ultrawideband performance with slant polarization...
-
Macromodeling of multiport systems using a fast implementation of the vector fitting method
PublicationMakromodelowanie układów wieloportowych przy użyciu vector fittingu jest czasochłonne oraz wymaga dużych zasobów obliczeniowych w przypadku gdy wszystkie elementy macierzy systemowej dzielą wspólne bieguny. Artykuł prezentuje stabilne rozwiązanie, które usuwa problem rzadkości macierzy poprzez zastosowanie bezpośrednie dekompozycje QR. Jako przykład przedstawiony został 60 portowy układ, który ilustruje oszczędność czasu potrzebnego...
-
Efficient and Systematic Solution of Real and Complex Eigenvalue Problems Employing Simplex Chain Vertices Searching Procedure
PublicationW artykule zaprezentowano nowatorską metodę, pozwalającą w bardzo efektywny sposób rozwiązywać rzeczywiste i zespolone zagadnienia własne (które przekształcić można w równania nieliniowe) często spotykane w elektrodynamice obliczeniowej. Idea metody oparta jest o śledzenie miejsc zerowych otrzymanego równania nieliniowego. W proponowanej technice zastosowano regularne wielościany, budując z nich łańcuch (ścieżkę) poszukiwanych...
-
Synthesis of coupled lossy resonator filters.
PublicationA technique for fast synthesis of coupling matrix low-pass prototypes of generalized. Chebyshev bandpass filters with lossy resonators is presented in this letter. The coupling matrix is found by solving a nonlinear least squares problem based on zeros and poles of filter's transfer functions.
-
A Novel Modal Technique for Time and Frequency Domain Analysis of Waveguide Components
PublicationW pracy zaprezentowano, nową i szybką metodę analizy komponentów falowodowych. Metoda opiera się na kombinacji metody różnic skończonych, metody dekompozycji dziedziny obliczeniowej, redukcji rzędu modelu oraz dyskretnych rozwinięć funkcyjnych. Przedstawiona technika pozwala na skrócenie czasu analizy układu nawet o dwa rzędy wielkości w stosunku do poprzednich algorytmów.
-
Design of Microwave Lossy Filter Based on Substrate Integrated Waveguide (SIW)
PublicationIn this letter, we propose a lossy three-pole Chebyshev filter centered at 5.15 GHz, based on the substrate integrated waveguide (SIW) with scattering characteristics shifted down by 5.68 dB. The filter is composed of three directly coupled SIW cavities with three lossy couplings between nonadjacent resonators. These additional couplings are realized using mixed coupled slot and microstrip lines connected with metal electrode leadless...
-
Quadratic programming approach to coupled resonator filter cad
PublicationArtykuł prezentuje technikę komputerowego wspomagania procesu projektowania filtrów zbliżeniowych. Polega ona na sformułowaniu macierzy sprzężeń jako problemu programowania kwadratowego (QP). Dzięki zdefiniowaniu procedury optymalizacyjnej jako problemu QP, przy założeniu liniowej zależności współczynników sprzężeń od wymiarów geometrycznych struktury, uzyskano znaczącą redukcję liczby pełnofalowych symulacji prowadzących do uzyskania...
-
Analysis of single-ground-plane coplanar waveguide
PublicationW pracy przedstawion metodę analizy rodziny koplanarnych linii transmisyjnych z pojedynczym przewodem masy. Oryginalne, nie znane wcześniej wyniki modelowania numerycznego potwierdzone zostały dużą zgodnością z wynikami pomiarów wykonanych dla struktury falowodu koplanarnego z pojedynczym przewodem masy (SGP-CPW.
-
Equivalent spice circuits with guaranteed passivity from nonpassive models
PublicationW artykule przedstawiona została nowa technika wymuszania pasywności schematów zastępczych. Opracowana technika pozwala na konstrukcję schematów zastępczych bardzo złożonych układów, oraz pozwala na wymuszenie pasywności modelu tworzonego na podstawie danych niepasywnych.
-
Analysis of circular cavity with cylindrical objects
PublicationArtykuł opisuje analizę rozpraszania fali elektromagnetycznej na obiektach cylindrycznych rozmieszczonych dowolnie w strukturze rezonatora. Analiza oparta jest na metodzie dopasowania rodzajów. Dokładność i poprawność metody jest zweryfikowana poprzez porównanie uzyskanych wyników z wynikami otrzymanymi z metod alternatywnych i własnych pomiarów wykonanych układów.
-
Projection framework for hybrid methods derived from finite difference operators in time and frequency domain
PublicationW artykule przedstawiono ogólną koncepcję tworzenia algorytmów hybrydowych na bazie operatorowego sformułowania metody różnic skończonych. Wykorzystano koncepcję projekcji ortogonalnej w przestrzeni skończeniewymiarowej w celu modyfilacji pierwotnego sformułowania.
-
Generalized Chebyshev Bandpass Filters With Frequency-Dependent Couplings Based on Stubs
PublicationThis paper presents an accurate synthesis method for inline and cross-coupled generalized Chebyshev bandpass filters with frequency-dependent couplings implemented via open and short stubs. The technique involves the synthesis of a lumped-element prototy pe in the form of a coupling matrix with a frequency-dependent term and the conversion of this prototype to a distributed-element mode l composed of sections of TEM lines. This...
-
Rapid EM-Driven Design of Compact RF Circuits By Means of Nested Space Mapping
PublicationA methodology for rapid design of RF circuits constituted by compact microstrip resonant-cells (CMRCs) is presented. Our approach exploits nested space mapping (NSM) technology, where the inner SM layer is used to correct the equivalent circuit model at the CMRC level, whereas the outer layer enhances the coarse model of the entire structure under design. We demonstrate that NSM dramatically improves performance of surrogate-based...
-
An Analysis of Multistrip Line Configuration on Elliptical Cylinder
PublicationA configuration of multistrip lines mounted on a multilayer dielectric coated elliptic cylinder is investigated in this paper. A full-wave analysis and a moment-method calculation are employed. The analysis is carried out considering the expansion of the field as a series of Mathieu functions. Both open and shielded lines are considered in the analysis. Propagation coefficients and characteristic impedances are calculated for the...
-
A Mesh Deformation Technique Based on Solid Mechanics for Parametric Analysis of High-Frequency Devices With 3-D FEM
PublicationIn this paper, a versatile technique for mesh defor- mation is discussed, targeted at the electromagnetic (EM) field simulation of high-frequency devices using the 3-D finite element method (FEM). The approach proposed applies a linear elasticity model to compute the displacements of the internal mesh nodes in 3-D when the structure geometry is changed. The technique is compared with an alternative approach...
-
Edge-Guided Mode Performance and Applications in Nonreciprocal Millimeter-Wave Gyroelectric Components
PublicationThe analogies between the behavior of gyromagnetic and gyroelectric nonreciprocal structures, the use of the simple transfer matrix approach, and the edge-guided (EG) wave property, supported in a parallel plate model for integrated magnetized semiconductor waveguide, are investigated in those frequency regions, where the effective permittivity is negative or positive. As with their ferrite counterparts, the leakage of the EG waves...
-
A Stabilized Complex LOBPCG Eigensolver for the Analysis of Moderately Lossy EM Structures
PublicationThis letter proposes a stabilized locally optimal block preconditioned conjugate gradient method for computing selected eigenvalues for complex symmetric generalized non-Hermitian eigenproblems. Effectiveness of the presented approach is demonstrated for a moderately lossy dual-mode dielectric resonator, modeled using finite-element method with higher order elements
-
Communication and Load Balancing Optimization for Finite Element Electromagnetic Simulations Using Multi-GPU Workstation
PublicationThis paper considers a method for accelerating finite-element simulations of electromagnetic problems on a workstation using graphics processing units (GPUs). The focus is on finite-element formulations using higher order elements and tetrahedral meshes that lead to sparse matrices too large to be dealt with on a typical workstation using direct methods. We discuss the problem of rapid matrix generation and assembly, as well as...
-
Automatic Reduction-Order Selection for Finite-Element Macromodels
PublicationAn automatic reduction-order selection algorithm for macromodels in finite-element analysis is presented. The algorithm is based on a goal-oriented a posteriori error estimator that operates on low-order reduced blocks of matrices, and hence, it can be evaluated extremely quickly.
-
A Self-Equalized Waveguide Filter With Frequency-Dependent (Resonant) Couplings
PublicationThis letter presents a design of a fifth-order linear phase filter with frequency-dependent couplings. The filter is composed of a triplet that is directly coupled to two resonators at the input and output. To provide group delay flattening a cross-coupling in the trisection has a strongly dispersive character with a negative slope parameter. To achieve this, an E-plane stub with a septum was used. To further improve the filter...