Filters
total: 376
filtered: 367
Search results for: QUANTUM MATERIALS
-
Principles of target DNA cleavage and the role of Mg2+ in the catalysis of CRISPR–Cas9
PublicationAt the core of the CRISPR–Cas9 genome-editing technology, the endonuclease Cas9 introduces site-specific breaks in DNA. However, precise mechanistic information to ameliorate Cas9 function is still missing. Here, multimicrosecond molecular dynamics, free energy and multiscale simulations are combined with solution NMR and DNA cleavage experiments to resolve the catalytic mechanism of target DNA cleavage. We show that the conformation...
-
Mechanism of reaction of RNA-dependent RNA polymerase from SARS-CoV-2
PublicationWe combine molecular dynamics, statistical mechanics, and hybrid quantum mechanics/molecular mechanics simulations to describe mechanistically the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp). Our study analyzes the binding mode of both natural triphosphate substrates as well as remdesivir triphosphate (the active form of drug), which is bound preferentially over ATP by RdRp while...
-
The Role of Electrostatics in Enzymes: Do Biomolecular Force Fields Reflect Protein Electric Fields?
PublicationPreorganization of large, directionally oriented, electric fields inside protein active sites has been proposed as a crucial contributor to catalytic mechanism in many enzymes, and it may be efficiently investigated at the atomistic level with molecular dynamics simulations. Here, we evaluate the ability of the AMOEBA polarizable force field, as well as the additive Amber ff14SB and Charmm C36m models, to describe the electric...
-
Self-healing mechanism of metallopolymers investigated by QM/MM simulations and Raman spectroscopy
PublicationThe thermally induced self-healing mechanisms in metallopolymers based on bisterpyridine complexes of iron(II) sulfate and cadmium(II) bromide, respectively, were studied by means of combined quantum mechanical/molecular mechanical (QM/MM) simulations and Raman spectroscopy. Two possible healing schemes, one based on a decomplexation of the cross-linking complexes and a second one relying on the dissociation of ionic clusters,...
-
Lead-free bismuth-based perovskites coupled with g–C3N4: A machine learning based novel approach for visible light induced degradation of pollutants
PublicationThe use of metal halide perovskites in photocatalytic processes has been attempted because of their unique optical properties. In this work, for the first time, Pb-free Bi-based perovskites of the Cs3Bi2X9 type (X = Cl, Br, I, Cl/Br, Cl/I, Br/I) were synthesized and subjected to comprehensive morphological, structural, and surface analyses, and photocatalytic properties in the phenol degradation reaction were examined. Furthermore,...
-
Electromodulation of monomer and excimer phosphorescence in vacuum-evaporated films of platinum (II) complexes of 1,3-di(2-pyridyl)benzenes
PublicationElectric field-modulated photoluminescence (EML) measurements are presented for vacuum-evaporated films of cyclometallated Pt (II) complexes of 1,3-di(2-pyridyl) benzenes used as triplet emitters in organic light-emitting diodes (OLEDs). The excimer phosphorescence is quenched by the external electric field of 2.5 MV/cm up to 25% but the same effect on monomer phosphorescence is one order of magnitude smaller. The higher quenching...
-
Experimental and DFT insights into an eco-friendly photocatalytic system toward environmental remediation and hydrogen generation based on AgInS2 quantum dots embedded on Bi2WO6
PublicationBismuth tungstate (Bi2WO6) can work as a photocatalyst but suffers from rapid recombination of photogenerated charge carriers. Herein, density functional theory (DFT) simulations revealed that the formation of a thermodynamically stable AgInS2(112)/Bi2WO6(010) heterojunction could promote charge separation and enhance the photoactivity of Bi2WO6. To confirm these theoretical predictions, a new type of photocatalysts in the form...
-
Calculating the Partition Coefficients of Organic Solvents in Octanol/Water and Octanol/Air
PublicationPartition coefficients define how a solute is distributed between two immiscible phases at equilibrium. The experimental estimation of partition coefficients in a complex system can be an expensive, difficult, and time-consuming process. Here a computational strategy to predict the distributions of a set of solutes in two relevant phase equilibria is presented. The octanol/water and octanol/air partition coefficients are predicted...
-
Guanosine Dianions Hydrated by One to Four Water Molecules
PublicationIntermolecular interactions such as those present in molecule···water complexes may profoundly influence the physicochemical properties of molecules. Here, we carried out an experimental–computational study on doubly deprotonated guanosine monophosphate···water clusters, [dGMP – 2H]2–·nH2O (n = 1–4), using a combination of negative anion photoelectron spectroscopy (NIPES) with molecular dynamics (MD) and quantum chemical (QM) calculations....
-
Non-Perfect Propagation of Information to a Noisy Environment with Self-Evolution
PublicationWe study the non-perfect propagation of information for evolving a low-dimensional environment that includes self-evolution as well as noisy initial states and analyse the interrelations between the degree of objectivization and environment parameters. In particular, we consider an analytical model of three interacting qubits and derive its objectivity parameters. The numerical analysis shows that the quality of the spectrum broadcast...
-
Theory versus experiment for vacuum Rabi oscillations in lossy cavities. II. Direct test of uniqueness of vacuum
PublicationThe paper continues the analysis of vacuum Rabi oscillations we started in part I [Phys. Rev. A 79, 033836 (2009)]. Here we concentrate on experimental consequences for cavity QED of two different classes of representations of harmonic-oscillator Lie algebras. The zero-temperature master equation, derived in part I for irreducible representations of the algebra, is reformulated in a reducible representation that models electromagnetic...
-
Numerical modeling of quantum dynamical processes
PublicationIn this dissertation I present a high-precision (15, 18 or 33 decimal places) C++ implementation of quantum dynamics time propagation algorithms for both time-independent and time-dependent Hamiltonian with an inhomogeneous source term. Moreover I present an extension of both algorithms for time propagation to handle arbitrary number of coupled electronic levels. I have performed a careful validation of these implementations comparing...
-
Device-independent quantum key distribution based on measurement inputs
PublicationWe provide an analysis of a family of device-independent quantum key distribution (QKD) protocols that has the following features. (a) The bits used for the secret key do not come from the results of the measurements on an entangled state but from the choices of settings. (b) Instead of a single security parameter (a violation of some Bell inequality) a set of them is used to estimate the level of trust in the secrecy of the key....
-
Waterborne polyesters partially based on renewable resources
PublicationA new experimental approach for preparing biobased, water-soluble polyesters via titanium(IV) n-butoxide-catalyzed bulk polycondensation is presented. In the described method polymers were obtained from isosorbide, maleic anhydride and poly(ethylene glycol). The chemical structure of the synthesized polyesters was confirmed using 2D NMR spectroscopy and by titration methods. Careful analysis of 2D NMR spectra viz. Correlation Spectra...
-
Band Gap Engineering toward Semimetallic Character of Quinone-Rich Polydopamine
PublicationSemiconductor|melanin interfaces have received increasingly more attention in the fields of photocatalysis and applied electrochemistry because of their facile synthesis, unique electrical properties, and strong capability toward photosensitization. In this work, we describe the electropolymerization of quinone-rich polydopamine (PDA) on the surface of hydrogenated TiO2 nanotubes with enhanced photoactivity in the visible spectrum....
-
Stable nanoconjugates of transferrin with alloyed quaternary nanocrystals Ag–In–Zn–S as a biological entity for tumor recognition
PublicationOne way to limit the negative effects of anti-tumor drugs on healthy cells is targeted therapy employing functionalized drug carriers. Here we present a biocompatible and stable nanoconjugate of transferrin anchored to Ag-In-Zn-S quantum dots modified with 11-mercaptoundecanoic acid (Tf-QD) as a drug carrier versus typical anticancer drug, doxorubicin. Detailed investigations of Tf-QD nanoconjugates without and with doxorubicin...
-
Nonlocal elasticity analysis of moderately thick porous functionally graded plates in a hygro-thermal environment
PublicationThis work performs a novel quasi three-dimensional (3D) bending analysis for a moderately thick functionally graded material (FGM) made of nanoceramics and metal powders, in presence of porosities due to some incorrect manufacturing processes. Such porosities can appear within the plate in two forms, namely, even and uneven distributions. The modeled system assumes a polymer matrix where both shear and transverse factors coexist....
-
Superconductivity and appearance of negative magnetocaloric effect in Ba1–xKxBiO3 perovskites, doped by Y, La and Pr
PublicationRecently, substantial attention is given to the bismuth-based perovskites for variety of electronic applications. The perovskites are used for quantum dots displays (QLED), photovoltaic systems and superconducting (HTS) devices. In this paper comprehensive studies of Ba1–xKxBi1–yREyO3 bismuth perovskites (REBKBO, RE = Y , La or Pr) are reported. Apart from structural anomalous behavior at low temperatures, the electronic properties...
-
New Screening Protocol for Effective Green Solvents Selection of Benzamide, Salicylamide and Ethenzamide
PublicationNew protocol for screening efficient and environmentally friendly solvents was proposed and experimentally verified. The guidance for solvent selection comes from computed solubility via COSMO-RS approach. Furthermore, solute-solvent affinities computed using advanced quantum chemistry level were used as a rationale for observed solvents ranking. The screening protocol pointed out that 4-formylomorpholine (4FM) is an attractive...
-
Absolute Photoabsorption Cross-Sections of Methanol for Terrestrial and Astrophysical Relevance
PublicationWe investigate the methanol absorption spectrum in the range 5.5–10.8 eV to provide accurate and absolute cross-sections values. The main goal of this study is to provide a comprehensive analysis of methanol electronic-state spectroscopy by employing high-resolution vacuum ultraviolet (VUV) photoabsorption measurements together with state-of-the-art quantum chemical calculation methods. The VUV spectrum reveals several new features...
-
The importance of anchoring ligands of binuclear sensitizers on electron transfer processes and photovoltaic action in dye-sensitized solar cells
PublicationThe relatively low photon-to-current conversion efficiency of dye-sensitized solar cells is their major drawback limiting widespread application. Light harvesting, followed by a series of electron transfer processes, is the critical step in photocurrent generation. An in-depth understanding and fine optimization of those processes are crucial to enhance cell performance. In this work, we synthesize two new bi-ruthenium sensitizers...
-
Tuning the ferromagnetic phase in the CDW compound SmNiC2 via chemical alloying
PublicationWe report a study on tuning the charge density wave (CDW) ferromagnet SmNiC2 to a weakly coupled superconductor by substituting La for Sm. X-ray diffraction measurements show that the doped compounds obey Vegard’s law, where La (Lu) alloying expands (shrinks) the lattice due to its larger (smaller) atomic size than Sm. In the series Sm1−xLaxNiC2, CDW transition (TCDW =148K) for SmNiC2 is gradually suppressed, while the ferromagnetic...
-
Interactions of protons with furan molecules studied by collision-induced emission spectroscopy at the incident energy range of 50–1000 eV
PublicationInvestigations of the ion-molecule reactions provide insight into many fields ranging from the stellar wind interaction with interstellar media, up to medicine and industrial applications. Besides the applications, the understanding of these processes is itself a problem of fundamental importance. Thus, interactions of protons with the gas-phase furan molecules have been investigated for the first time in the energy range of 50–1000...
-
Modelling charge transfer processes in C2+ -tetrahydrofuran collision for ion-induced radiation damage in DNA building blocks
PublicationInvestigations of collision-induced processes involving carbon ions and molecules of biological interest in particular DNA building blocks, are crucial to model the effect of radiation on cells in order to improve medical treatments for cancer therapy. Using carbon ions appears to be one of the most efficient ways to increase biological effectiveness to damage cancerous cells by irradiating deep-seated tumors. Therefore, interest...
-
The effects of bifunctional linker and reflux time on the surface properties and photocatalytic activity of CdTe quantum dots decorated KTaO3 composite photocatalysts
PublicationNovel CdTe-KTaO3composite photocatalysts were successfully synthesized by using thioglycolic acid(TGA) or 3-mercaptopropionic acid (MPA) as linker molecules which facilitated attachment of CdTequantum dots to the surface of KTaO3nanocubes. The as-prepared photocatalysts were characterizedby UV–vis diffuse reflectance spectroscopy (DRS), X-ray diffraction (XRD), scanning electron microscopy(SEM), transmission electron microscopy...
-
Diaryl Sulfide Derivatives as Potential Iron Corrosion Inhibitors: A Computational Study
PublicationThe present work aimed to assess six diaryl sulfide derivatives as potential corrosion inhibitors. These derivatives were compared with dapsone (4,4′-diaminodiphenyl sulfone), a common leprosy antibiotic that has been shown to resist the corrosion of mild steel in acidic media with a corrosion efficiency exceeding 90%. Since all the studied compounds possess a common molecular backbone (diphenyl sulfide), dapsone was taken as the...
-
Interactions of telomeric proteins with nucleic acids: sequence recognition on intact and oxidatively damaged telomeres
PublicationTelomeres are complex nucleoprotein assemblies that play a vital role in the maintenance of functional ends of linear chromosomes. Telomeric DNA, composed of tandem repeats of the 5'-TTAGGG-3' motif, solves the so-called end replication problem: as chromosomes shorten with each cell division, no information is lost, and the telomere can be re-extended. In the cell, many protein factors regulate telomere length, nuclear positioning...
-
Acid–Base Equilibrium and Self-Association in Relation to High Antitumor Activity of Selected Unsymmetrical Bisacridines Established by Extensive Chemometric Analysis
PublicationUnsymmetrical bisacridines (UAs) represent a novel class of anticancer agents previously synthesized by our group. Our recent studies have demonstrated their high antitumor potential against multiple cancer cell lines and human tumor xenografts in nude mice. At the cellular level, these compounds affected 3D cancer spheroid growth and their cellular uptake was selectively modulated by quantum dots. UAs were shown to undergo metabolic...
-
Texture or Linker? Competitive Patterning of Receptor Assembly toward Ultra-Sensitive Impedimetric Detection of Viral Species at Gold-Nanotextured Titanium Surfaces
PublicationIn this work, we study the electrodes with a periodic matrix of gold particles pattered by titanium dimples and modified by 3-mercaptopropionic acid (MPA) followed by CD147 receptor grafting for specific impedimetric detection of SARS-CoV-2 viral spike proteins. The synergistic DFT and MM/MD modeling revealed that MPA adsorption geometries on the Au–Ti surface have preferential and stronger binding patterns through the carboxyl...
-
pH-Responsive Drug Delivery Nanoplatforms as Smart Carriers of Unsymmetrical Bisacridines for Targeted Cancer Therapy
PublicationSelective therapy and controlled drug release at an intracellular level remain key challenges for effective cancer treatment. Here, we employed folic acid (FA) as a self-navigating molecule in nanoconjugates containing quantum dots (QDs) and β-cyclodextrin (β-CD) for the delivery of antitumor unsymmetrical bisacridine compound (C-2028) to lung and prostate cancers as well as normal cells. The bisacridine derivative can form the...
-
An optimal nonlinear fractional order controller for passive/active base isolation building equipped with friction-tuned mass dampers
PublicationThis paper presents an optimal nonlinear fractional-order controller (ONFOC) designed to reduce the seismic responses of tall buildings equipped with a base-isolation (BI) system and friction-tuned mass dampers (FTMDs). The parameters for the BI and FTMD systems, as well as their combinations (BI-FTMD and active BI-FTMD or ABI-FTMD), were optimized separately using a multi-objective quantum-inspired seagull optimization algorithm...
-
Triplet Formation and Triplet‐Triplet Annihilation Upconversion in Iodine Substituted Non‐Orthogonal BODIPY‐Perylene Dyads
PublicationBODIPY-perylene dyads have emerged as useful metal free sensitizers for triplet-triplet annihilation upconversion (TTAUC), these dyads are capable of efficient triplet generation via spinorbit charge transfer intersystem crossing (SOCT-ISC). This important route to triplet formation requires dyads in which two moieties are oriented perpendicular to each other. In this contribution, we give a deeper insight on the behavior of recently...
-
Chemical Pressure Tuning Magnetism from Pyrochlore to Triangular Lattices
PublicationGeometrically frustrated lattices combined with magnetism usually host quantum fluctuations that suppress magnetic orders and generate highly entangled ground states. Three-dimensionally (3D) frustrated magnets generally exist in the diamond and pyrochlore lattices, while two-dimensionally (2D) frustrated geometries contain Kagomé, triangular, and honeycomb lattices. In this work, we reported using chemical pressure to tune the magnetism...
-
Redox State Sensitive Spectroscopy of the Model Compound [(H-dcbpy)(2)Ru-II(NCS)(2)](2-) (dcbpy=2,2 '-Bipyridine-4,4 '-dicarboxylato)
PublicationThe charge transfer reaction mechanism in a ruthenium polypyridine model complex with isothiocyanato ligands, i.e., [(H-dcbpy)(2)Ru(NCS)(2)](2-) 2Bu(4)N(+) (Ru2H) (dcbpy = 2,2'-bipyridine-4,4'-dicarboxylato), has been investigated by combining UV-vis absorption, resonance Raman spectroscopy, and electrochemical methods. Understanding the photophysics of light-harvesting complexes of this class is an indispensable prerequisite to...
-
Electronic conductivity in the SiO2-PbO-Fe2O3 glass containing magnetic nanostructures
PublicationThe linear impedance spectra of iron–silicate–lead glass samples were measured in the frequency range from 1 MHz to 1 MHz and in the temperature range from 153 K to 423 K. The structure was investigated by means of XRD and atomic force microscopy. Local electrical and magnetic properties of the samples were tested with the aid of electrostatic force microscopy (EFM) and magnetic force microscopy (MFM). The obtained results show...
-
Electromodulation of photoluminescence in vacuum-evaporated films of bathocuproine
PublicationElectric field-modulated photoluminescence (EML) was measured in vacuum-evaporated films of bathocuproine (BCP), electron-transporting material commonly used in organic light-emitting diodes (OLEDs). The external electric field of 106 V/cm strength decreases long-wavelength photoluminescence (PL) up to 10% but the same effect on short-wavelength PL is above one order of magnitude smaller. The distinctive difference between the...
-
Geometry optimization of steroid sulfatase inhibitors - the influence on the free binding energy with STS
PublicationIn the paper we review the application of two techniques (molecular mechanics and quantum mechanics) to study the influence of geometry optimization of the steroid sulfatase inhibitors on the values of descriptors coded their chemical structure and their free binding energy with the STS protein. We selected 22 STS-inhibitors and compared their structures optimized with MM+, PM7 and DFT B3LYP/6–31++G* approaches considering separately...
-
Quantum Dots as a Good Carriers of Unsymmetrical Bisacridines for Modulating Cellular Uptake and the Biological Response in Lung and Colon Cancer Cells
PublicationNanotechnology-based drug delivery provides a promising area for improving the efficacy of cancer treatments. Therefore, we investigate the potential of using quantum dots (QDs) as drug carriers for antitumor unsymmetrical bisacridine derivatives (UAs) to cancer cells. We examine the influence of QD–UA hybrids on the cellular uptake, internalization (Confocal Laser Scanning Microscope), and the biological response (flow cytometry...
-
Efficacious Alkaline Copper Corrosion Inhibition by a Mixed Ligand Copper(II) Complex of 2,2′-Bipyridine and Glycine: Electrochemical and Theoretical Studies
PublicationA mixed ligand copper(II) complex, namely, [Cu(BPy)(Gly)Cl]⋅2H2O (CuC) (BPy=2,2′-bipyridine and Gly=glycine), was synthesized and characterized. The synthesized CuC complex was tested as inhibitor to effectively mitigate the corrosion of copper in alkaline solutions using the linear sweep voltammetry (LSV) and linear polarization resistance (LPR) techniques. For the sake of comparison, such two D.C. electrochemical techniques were...
-
Foliate-Targeting Quantum Dots-β-Cyclodextrin Nanocarrier for Efficient Delivery of Unsymmetrical Bisacridines to Lung and Prostate Cancer Cells
PublicationTargeted drug delivery by nanocarriers molecules can increase the efficiency of cancer treatment. One of the targeting ligands is folic acid (FA), which has a high affinity for the folic acid receptors, which are overexpressed in many cancers. Herein, we describe the preparation of the nanoconjugates containing quantum dots (QDs) and β-cyclodextrin (β-CD) with foliate-targeting properties for the delivery of anticancer compound...
-
On the origin of surface imposed anisotropic growth of salicylic and acetylsalicylic acids crystals during droplet evaporation
PublicationIn this paper droplet evaporative crystallization of salicylic acid (SA) and acetylsalicylic acid (ASA) crystals on different surfaces, such as glass, polyvinyl alcohol (PVA), and paraffin was studied. The obtained crystals were analyzed using powder X-ray diffraction (PXRD) technique. In order to better understand the effect of the surface on evaporative crystallization, crystals deposited on glass were scraped off. Moreover,...
-
Studies on the solid-liquid equilibria and intermolecular interactions Urea binary mixtures with Sulfanilamide and Sulfacetamide
PublicationThe binary phase diagrams of Sulfanilamide-Urea (SN-U) and Sulfacetamide-Urea (SC-U) were measured using differential scanning calorimetry technique (DSC). Both examined mixtures were found to form simple binary eutectics. The limited miscibility in the solid state observed by DSC, proving inability of co-crystallization in new multi-molecular form, was also confirmed using PXRD and FTIR-ATR measurements of solid dispersions...
-
Catalytic Mechanism of Non-Target DNA Cleavage in CRISPR-Cas9 Revealed by Ab Initio Molecular Dynamics
PublicationCRISPR-Cas9 is a cutting-edge genome editing technology, which uses the endonuclease Cas9 to introduce mutations at desired sites of the genome. This revolutionary tool is promising to treat a myriad of human genetic diseases. Nevertheless, the molecular basis of DNA cleavage, which is a fundamental step for genome editing, has not been established. Here, quantum–classical molecular dynamics (MD) and free energy methods are used...
-
Hybrid P3HT: PCBM/GaN nanowire/Si cascade heterojunction for photovoltaic application
PublicationPoly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) are commonly used for the fabrication of organic photovoltaics (OPV). Efficiency limitations of OPVs could be circumvented by incorporation of inorganic nanostructures into organic blends. Again, integration of organic solar cells with well-developed silicon photovoltaic technology is ultimately desirable. In present work, GaN nanowires with diameters...
-
BODIPY‐Perylene Charge Transfer Compounds; Sensitizers for Triplet‐Triplet Annihilation Up‐conversion
PublicationBODIPY heterochromophores, asymmetrically substituted with perylene and/or iodine at the 2 and 6 positions were prepared and investigated as sensitizers for triplet-triplet annihilation up conversion (TTA-UC). Single-crystal X-ray crystallographic analyses show that the torsion angle between BODIPY and perylene units lie between 73.54 and 74.51, though they are not orthogonal. Both compounds show intense, charge transfer absorption...
-
Charge Transfer, Complexes Formation and Furan Fragmentation Induced by Collisions with Low-Energy Helium Cations
PublicationThe present work focuses on unraveling the collisional processes leading to the fragmentation of the gas-phase furan molecules under the He+ and He2+ cations impact in the energy range 5–2000 eV. The presence of different mechanisms was identified by the analysis of the optical fragmentation spectra measured using the collision-induced emission spectroscopy (CIES) in conjunction with the ab initio calculations. The measurements of...
-
DL_MG: A Parallel Multigrid Poisson and Poisson–Boltzmann Solver for Electronic Structure Calculations in Vacuum and Solution
PublicationThe solution of the Poisson equation is a crucial step in electronic structure calculations, yielding the electrostatic potential -- a key component of the quantum mechanical Hamiltonian. In recent decades, theoretical advances and increases in computer performance have made it possible to simulate the electronic structure of extended systems in complex environments. This requires the solution of more complicated variants of the...
-
Magnetic field mapping along a NV-rich nanodiamond-doped fiber
PublicationIntegration of NV−-rich diamond with optical fibers enables guiding quantum information on the spin state of the NV− color center. Diamond-functionalized optical fiber sensors have been demonstrated with impressive sub-nanotesla magnetic field sensitivities over localized magnetic field sources, but their potential for distributed sensing remains unexplored. The volumetric incorporation of diamonds into the optical fiber core allows...
-
Large magnetoresistance and first-order phase transition in antiferromagnetic single-crystalline EuAg4Sb2
Publicationpresent the results of a thorough investigation of the physical properties of single crystals using magnetization, heat capacity, and electrical resistivity measurements. High-quality single crystals, which crystallize in a trigonal structure with space group , were grown using a conventional flux method. Temperature-dependent magnetization measurements along different crystallographic orientations confirm two antiferromagnetic...
-
Linear-scaling calculation of Hartree-Fock exchange energy with Non-orthogonal Generalised Wannier Functions
PublicationWe present a method for the calculation of four-centre two-electron repulsion integrals in terms of localised non-orthogonal generalised Wannier functions (NGWFs). Our method has been imple- mented in the ONETEP program and is used to compute the Hartree-Fock exchange energy component of Hartree-Fock and Density Functional Theory (DFT) calculations with hybrid exchange-correlation functionals. As the NGWFs are optimised in situ...