Filters
total: 220
filtered: 204
Search results for: INTERPRETABLE AI, NEURAL KNOWLEDGE DNA, DECISION TREES, DEEP REINFORCEMENT LEARNING
-
Efficiency of Artificial Intelligence Methods for Hearing Loss Type Classification: an Evaluation
PublicationThe evaluation of hearing loss is primarily conducted by pure tone audiometry testing, which is often regarded as golden standard for assessing auditory function. If the presence of hearing loss is determined, it is possible to differentiate between three types of hearing loss: sensorineural, conductive, and mixed. This study presents a comprehensive comparison of a variety of AI classification models, performed on 4007 pure tone...
-
Adding Interpretability to Neural Knowledge DNA
PublicationThis paper proposes a novel approach that adds the interpretability to Neural Knowledge DNA (NK-DNA) via generating a decision tree. The NK-DNA is a promising knowledge representation approach for acquiring, storing, sharing, and reusing knowledge among machines and computing systems. We introduce the decision tree-based generative method for knowledge extraction and representation to make the NK-DNA more explainable. We examine...
-
Interpretable Deep Learning Model for the Detection and Reconstruction of Dysarthric Speech
PublicationWe present a novel deep learning model for the detection and reconstruction of dysarthric speech. We train the model with a multi-task learning technique to jointly solve dysarthria detection and speech reconstruction tasks. The model key feature is a low-dimensional latent space that is meant to encode the properties of dysarthric speech. It is commonly believed that neural networks are black boxes that solve problems but do not...
-
Toward Intelligent Recommendations Using the Neural Knowledge DNA
PublicationIn this paper we propose a novel recommendation approach using past news click data and the Neural Knowledge DNA (NK-DNA). The Neural Knowledge DNA is a novel knowledge representation method designed to support discovering, storing, reusing, improving, and sharing knowledge among machines and computing systems. We examine our approach for news recommendation tasks on the MIND benchmark dataset. By taking advantages of NK-DNA, deep...
-
Neural networks and deep learning
PublicationIn this chapter we will provide the general and fundamental background related to Neural Networks and Deep Learning techniques. Specifically, we divide the fundamentals of deep learning in three parts, the first one introduces Deep Feed Forward Networks and the main training algorithms in the context of optimization. The second part covers Convolutional Neural Networks (CNN) and discusses their main advantages and shortcomings...
-
Towards neural knowledge DNA
PublicationIn this paper, we propose the Neural Knowledge DNA, a framework that tailors the ideas underlying the success of neural networks to the scope of knowledge representation. Knowledge representation is a fundamental field that dedicates to representing information about the world in a form that computer systems can utilize to solve complex tasks. The proposed Neural Knowledge DNA is designed to support discovering, storing, reusing,...
-
Adding Intelligence to Cars Using the Neural Knowledge DNA
PublicationIn this paper we propose a Neural Knowledge DNA based framework that is capable of learning from the car’s daily operation. The Neural Knowledge DNA is a novel knowledge representation and reasoning approach designed to support discovering, storing, reusing, improving, and sharing knowledge among machines and computing devices. We examine our framework for drivers' classification based on their driving behaviour. The experimental...
-
Explainable AI for Inspecting Adversarial Attacks on Deep Neural Networks
PublicationDeep Neural Networks (DNN) are state of the art algorithms for image classification. Although significant achievements and perspectives, deep neural networks and accompanying learning algorithms have some important challenges to tackle. However, it appears that it is relatively easy to attack and fool with well-designed input samples called adversarial examples. Adversarial perturba-tions are unnoticeable for humans. Such attacks...
-
The Neural Knowledge DNA Based Smart Internet of Things
PublicationABSTRACT The Internet of Things (IoT) has gained significant attention from industry as well as academia during the past decade. Smartness, however, remains a substantial challenge for IoT applications. Recent advances in networked sensor technologies, computing, and machine learning have made it possible for building new smart IoT applications. In this paper, we propose a novel approach: the Neural Knowledge DNA based Smart Internet...
-
Toward Intelligent Vehicle Intrusion Detection Using the Neural Knowledge DNA
PublicationIn this paper, we propose a novel intrusion detection approach using past driving experience and the neural knowledge DNA for in-vehicle information system security. The neural knowledge DNA is a novel knowledge representation method designed to support discovering, storing, reusing, improving, and sharing knowledge among machines and computing systems. We examine our approach for classifying malicious vehicle control commands...
-
Interpretable deep learning approach for classification of breast cancer - a comparative analysis of multiple instance learning models
PublicationBreast cancer is the most frequent female cancer. Its early diagnosis increases the chances of a complete cure for the patient. Suitably designed deep learning algorithms can be an excellent tool for quick screening analysis and support radiologists and oncologists in diagnosing breast cancer.The design of a deep learning-based system for automated breast cancer diagnosis is not easy due to the lack of annotated data, especially...
-
When Neural Networks Meet Decisional DNA: A Promising New Perspective for Knowledge Representation and Sharing
PublicationABSTRACT In this article, we introduce a novel concept combining neural network technology and Decisional DNA for knowledge representation and sharing. Instead of using traditional machine learning and knowledge discovery methods, this approach explores the way of knowledge extraction through deep learning processes based on a domain’s past decisional events captured by Decisional DNA. We compare our approach with kNN (k-nearest...
-
Decision making process using deep learning
PublicationEndüstri 4.0, dördüncü endüstri devrimi veya Endüstriyel Nesnelerin İnterneti (IIoT) olarak adlandırılan sanayi akımı, işletmelere, daha verimli, daha büyük bir esneklikle, daha güvenli ve daha çevre dostu bir şekilde üretim yapma imkanı sunmaktadır. Nesnelerin İnterneti ile bağlantılı yeni teknoloji ve hizmetler birçok endüstriyel uygulamada devrim niteliği taşımaktadır. Fabrikalardaki otomasyon, tahminleyici bakım (PdM – Predictive...
-
DEEP CONVOLUTIONAL NEURAL NETWORKS AS A DECISION SUPPORT TOOL IN MEDICAL PROBLEMS – MALIGNANT MELANOMA CASE STUDY
PublicationThe paper presents utilization of one of the latest tool from the group of Machine learning techniques, namely Deep Convolutional Neural Networks (CNN), in process of decision making in selected medical problems. After the survey of the most successful applications of CNN in solving medical problems, the paper focuses on the very difficult problem of automatic analyses of the skin lesions. The authors propose the CNN structure...
-
Data, Information, Knowledge, Wisdom Pyramid Concept Revisited in the Context of Deep Learning
PublicationIn this paper, the data, information, knowledge, and wisdom (DIKW) pyramid is revisited in the context of deep learning applied to machine learningbased audio signal processing. A discussion on the DIKW schema is carried out, resulting in a proposal that may supplement the original concept. Parallels between DIWK pertaining to audio processing are presented based on examples of the case studies performed by the author and her collaborators....
-
Optimizing Control of Wastewater Treatment Plant With Reinforcement Learning: Technical Evaluation of Twin-Delayed Deep Deterministic Policy Gradient Agent
PublicationControl of the wastewater treatment processes presents significant challenges due to the fluctuating nature of inflow and wastewater composition, alongside the system’s non-linear dynamics. Traditional control methods struggle to adapt to these variations, leading to an economically suboptimal operation of the process and a violation of norms imposed on the quality of wastewater discharged to the catchment area. This study proposes...
-
The Use of Artificial Neural Networks and Decision Trees to Predict the Degree of Odor Nuisance of Post-Digestion Sludge in the Sewage Treatment Plant Process
PublicationThis paper presents the application of artificial neural networks and decision trees for the prediction of odor properties of post-fermentation sludge from a biological-mechanical wastewater treatment plant. The input parameters were concentrations of popular compounds present in the sludge, such as toluene, p-xylene, and p-cresol, and process parameters including the concentration of volatile fatty acids, pH, and alkalinity in...
-
From Data to Decision: Interpretable Machine Learning for Predicting Flood Susceptibility in Gdańsk, Poland
PublicationFlood susceptibility prediction is complex due to the multifaceted interactions among hydrological, meteorological, and urbanisation factors, further exacerbated by climate change. This study addresses these complexities by investigating flood susceptibility in rapidly urbanising regions prone to extreme weather events, focusing on Gdańsk, Poland. Three popular ML techniques, Support Vector Machine (SVM), Random Forest (RF), and...
-
Comparison of Deep Neural Network Learning Algorithms for Mars Terrain Image Segmentation
PublicationThis paper is dedicated to the topic of terrain recognition on Mars using advanced techniques based on the convolutional neural networks (CNN). The work on the project was conducted based on the set of 18K images collected by the Curiosity, Opportunity and Spirit rovers. The data were later processed by the model operating in a Python environment, utilizing Keras and Tensorflow repositories. The model benefits from the pretrained...
-
Low-Cost and Highly-Accurate Behavioral Modeling of Antenna Structures by Means of Knowledge-Based Domain-Constrained Deep Learning Surrogates
PublicationThe awareness and practical benefits of behavioral modeling methods have been steadily growing in the antenna engineering community over the last decade or so. Undoubtedly, the most important advantage thereof is a possibility of a dramatic reduction of computational expenses associated with computer-aided design procedures, especially those relying on full-wave electromagnetic (EM) simulations. In particular, the employment of...
-
The Effectiveness of Using a Pretrained Deep Learning Neural Networks for Object Classification in Underwater Video
Publication -
Smart Knowledge Engineering for Cognitive Systems: A Brief Overview
PublicationCognition in computer sciences refers to the ability of a system to learn at scale, reason with purpose, and naturally interact with humans and other smart systems, such as humans do. To enhance intelligence, as well as to introduce cognitive functions into machines, recent studies have brought humans into the loop, turning the system into a human–AI hybrid. To effectively integrate and manipulate hybrid knowledge, suitable technologies...
-
Deep Learning: A Case Study for Image Recognition Using Transfer Learning
PublicationDeep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...
-
Deep Learning
PublicationDeep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...
-
Experience-Oriented Knowledge Management for Internet of Things
PublicationIn this paper, we propose a novel approach for knowledge management in Internet of Things. By utilizing Decisional DNA and deep learning technologies, our approach enables Internet of Things of experiential knowledge discovery, representation, reuse, and sharing among each other. Rather than using traditional machine learning and knowledge discovery methods, this approach focuses on capturing domain’s decisional events via Decisional...
-
Integrating Experience-Based Knowledge Representation and Machine Learning for Efficient Virtual Engineering Object Performance
PublicationMachine learning and Artificial Intelligence have grown significant attention from industry and academia during the past decade. The key reason behind interest is such technologies capabilities to revolutionize human life since they seamlessly integrate classical networks, networked objects and people to create more efficient environments. In this paper, the Knowledge Representation technique of Set of Experience...
-
Model-free and Model-based Reinforcement Learning, the Intersection of Learning and Planning
PublicationMy doctoral dissertation is intended as the compound of four publications considering: structure and randomness in planning and reinforcement learning, continuous control with ensemble deep deterministic policy gradients, toddler-inspired active representation learning, and large-scale deep reinforcement learning costs.
-
Towards Knowledge Sharing Oriented Adaptive Control
PublicationIn this paper, we propose a knowledge sharing oriented approach to enable a robot to reuse other robots' knowledge by adapting itself to the inverse dynamics model of the knowledge-sharing robot. The purpose of this work is to remove the heavy fine-tuning procedure required before using a new robot for a task via reusing other robots' knowledge. We use the Neural Knowledge DNA (NK-DNA) to help robots gain empirical knowledge and...
-
THE ROLE OF INFERENCE IN MOBILE MEDICAL APPLICATION DESIGN
PublicationIn the early 21st century, artificial intelligence began to be used to process medical information. However, before this happened, predictive models used in healthcare could only consider a limited number of variables, and only in properly structured and organised medical data. Today, advanced tools based on machine learning techniques - which, using artificial neural networks, can explore extremely complex relationships - and...
-
Decisional DNA for modeling and reuse of experiential clinical assessments in breast cancer diagnosis and treatment
PublicationClinical Decision Support Systems (CDSS) are active knowledge resources that use patient data to generate case specific advice. The fast pace of change of clinical knowledge imposes to CDSS the continuous update of the domain knowledge and decision criteria. Traditional approaches require costly tedious manual maintenance of the CDSS knowledge bases and repositories. Often, such an effort cannot be assumed by medical teams, hence...
-
Applying Decisional DNA to Internet of Things: The Concept and Initial Case Study
PublicationIn this article, we present a novel approach utilizing Decisional DNA to help the Internet of Things capture decisional events and reuse them for decision making in future operations. The Decisional DNA is a domain-independent, standard and flexible knowledge representation structure that allows its domains to acquire, store, and share experiential knowledge and formal decision events in an explicit way. We apply this approach...
-
Data Acquisition and Processing for GeoAI Models to Support Sustainable Agricultural Practices
PublicationThere are growing opportunities to leverage new technologies and data sources to address global problems related to sustainability, climate change, and biodiversity loss. The emerging discipline of GeoAI resulting from the convergence of AI and Geospatial science (Geo-AI) is enabling the possibility to harness the increasingly available open Earth Observation data collected from different constellations of satellites and sensors...
-
Detecting type of hearing loss with different AI classification methods: a performance review
PublicationHearing is one of the most crucial senses for all humans. It allows people to hear and connect with the environment, the people they can meet and the knowledge they need to live their lives to the fullest. Hearing loss can have a detrimental impact on a person's quality of life in a variety of ways, ranging from fewer educational and job opportunities due to impaired communication to social withdrawal in severe situations. Early...
-
Experience-Based Cognition for Driving Behavioral Fingerprint Extraction
PublicationABSTRACT With the rapid progress of information technologies, cars have been made increasingly intelligent. This allows cars to act as cognitive agents, i.e., to acquire knowledge and understanding of the driving habits and behavioral characteristics of drivers (i.e., driving behavioral fingerprint) through experience. Such knowledge can be then reused to facilitate the interaction between a car and its driver, and to develop better and...
-
Experience Based Clinical Decision Support Systems: An Overview and Case Studies
PublicationThis chapter briefly overviews the evolution of the application of the Decisional DNA and the Set of Experience Knowledge Structure (SOEKS) in the medical domain and in particular in the specific case of the experience-based decision support systems. Decisional DNA, as a knowledge representation structure, offers great possibilities on gathering explicit knowledge of formal decision events as well as a tool for decision making...
-
Virtual Engineering Objects: Effective Way of Knowledge Representation and Decision Making
PublicationThis paper presents a knowledge representation case study by constructing Decisional DNA of engineering objects. Decisional DNA, as a knowledge representation structure not only offers great possibilities on gathering explicit knowledge of formal decision events but also it is a powerful tool for decision-making process. The concept of Virtual engineering Object (VEO), which is a knowledge and experience representation of engineering...
-
Adaptive Algorithm for Interactive Question-based Search
PublicationPopular web search engines tend to improve the relevanceof their result pages, but the search is still keyword-oriented and far from "understanding" the queries' meaning. In the article we propose an interactive question-based search algorithm that might come up helpful for identifying users' intents. We describe the algorithm implemented in a form of a questions game. The stress is put mainly on the most critical aspect of this...
-
Dynamic Bankruptcy Prediction Models for European Enterprises
PublicationThis manuscript is devoted to the issue of forecasting corporate bankruptcy. Determining a firm’s bankruptcy risk is one of the most interesting topics for investors and decision-makers. The aim of the paper is to develop and to evaluate dynamic bankruptcy prediction models for European enterprises. To conduct this objective, four forecasting models are developed with the use of four different methods—fuzzy sets, recurrent and...
-
Breast MRI segmentation by deep learning: key gaps and challenges
PublicationBreast MRI segmentation plays a vital role in early diagnosis and treatment planning of breast anomalies. Convolutional neural networks with deep learning have indicated promise in automating this process, but significant gaps and challenges remain to address. This PubMed-based review provides a comprehensive literature overview of the latest deep learning models used for breast segmentation. The article categorizes the literature...
-
Developing an Ontology from Set of Experience KnowledgeStructure
PublicationWhen referring to knowledge forms,collecting for all decision eventsin a knowledge-explicit way becomes a significant ask for any company. Set of experience knowledge structure can assis in accomplishing this purpose.However,after collecting,distributing and sharing that knowledge as adecisional DNA is even a more important advance.Distributing and sharing companies' decisional DNA through an efficient development of Ontologies...
-
Deep Learning-Based, Multiclass Approach to Cancer Classification on Liquid Biopsy Data
PublicationThe field of cancer diagnostics has been revolutionized by liquid biopsies, which offer a bridge between laboratory research and clinical settings. These tests are less invasive than traditional biopsies and more convenient than routine imaging methods. Liquid biopsies allow studying of tumor-derived markers in bodily fluids, enabling the development of more precise cancer diagnostic tests for screening, disease monitoring, and...
-
Wpływ ukształtowania zbrojenia na zarysowanie i nośność żelbetowego węzła tarczowego ze wspornikiem
PublicationPraca ma charakter eksperymentalno-teoretyczny i dotyczy zagadnień związanych z żelbetowymi tarczami pracującymi w przestrzennym układzie konstrukcji budynków. Celem niniejszej dysertacji było określenie wpływu głównych parametrów jakimi są sposób ukształtowania zbrojenia i smukłość ścinania na zarysowanie i nośność żelbetowego przestrzennego węzła tarczowego ze wspornikiem. Na podstawie aktualnego stanu wiedzy, opracowano program...
-
Importance of artificial intelligence to support the process of anaerobicdigestion of kitchen waste with bioplastics / Znaczenie sztucznej inteligencji we wspomaganiu procesu beztlenowej fermentacji odpadów kuchennych zawierających bioplastiki
PublicationArtificial intelligence (AI) and machine learning were used to obtain more effective methods for conducting the digestion process and achieving final products. Data acquisition was carried out by an automatic monitoring and anal. research. The knowledge describing the anaerobic digestion process was summarized in the form of rules: IF (premise) THEN (conclusion). The compiled set of rules created a knowledge base of the expert...
-
Designing acoustic scattering elements using machine learning methods
PublicationIn the process of the design and correction of room acoustic properties, it is often necessary to select the appropriate type of acoustic treatment devices and make decisions regarding their size, geometry, and location of the devices inside the room under the treatment process. The goal of this doctoral dissertation is to develop and validate a mathematical model that allows predicting the effects of the application of the scattering...
-
Selected Technical Issues of Deep Neural Networks for Image Classification Purposes
PublicationIn recent years, deep learning and especially Deep Neural Networks (DNN) have obtained amazing performance on a variety of problems, in particular in classification or pattern recognition. Among many kinds of DNNs, the Convolutional Neural Networks (CNN) are most commonly used. However, due to their complexity, there are many problems related but not limited to optimizing network parameters, avoiding overfitting and ensuring good...
-
Self-Supervised Learning to Increase the Performance of Skin Lesion Classification
PublicationTo successfully train a deep neural network, a large amount of human-labeled data is required. Unfortunately, in many areas, collecting and labeling data is a difficult and tedious task. Several ways have been developed to mitigate the problem associated with the shortage of data, the most common of which is transfer learning. However, in many cases, the use of transfer learning as the only remedy is insufficient. In this study,...
-
Quantitative Risk Assessment in Construction Disputes Based on Machine Learning Tools
PublicationA high monetary value of the construction projects is one of the reasons of frequent disputes between a general contractor (GC) and a client. A construction site is a unique, one-time, and single-product factory with many parties involved and dependent on each other. The organizational dependencies and their complexity make any fault or mistake propagate and influence the final result (delays, cost overruns). The constant will...
-
Big Data from Sensor Network via Internet of Things to Edge Deep Learning for Smart City
PublicationData from a physical world is sampled by sensor networks, and then streams of Big Data are sent to cloud hosts to support decision making by deep learning software. In a smart city, some tasks may be assigned to smart devices of the Internet of Things for performing edge computing. Besides, a part of workload of calculations can be transferred to the cloud hosts. This paper proposes benchmarks for division tasks between an edge...
-
Book Review
PublicationActing over the last three decades as an Editor and Associate Editor for a number of international journals in the general area of cybernetics and AI, as well as a Chair and Co-Chair of numerous conferences in this field, I have had the exciting opportunity to closely witness and to be actively engaged in the stimulating research area of machine learning and its important augmentation with deep learning techniques and technologies. From...
-
Influence of accelerometer signal pre-processing and classification method on human activity recognition
PublicationA study of data pre-processing influence on accelerometer-based human activity recognition algorithms is presented. The frequency band used to filter-out the accelerometer signals and the number of accelerometers involved were considered in terms of their influence on the recognition accuracy. In the test four methods of classification were used: support vector machine, decision trees, neural network, k-nearest neighbor.