Filters
total: 178
filtered: 168
Search results for: compressive strength
-
Compressive Strength and Leaching Behavior of Mortars with Biomass Ash
Publication -
Analysis of ultimate compressive strength of cracked plates with the use of DOE techniques
PublicationThe objective of this work is to investigate the structural compressive response of plates with locked cracks accounting for all relevant factors and correlation between them. The nonlinear FE model considering both geometric and material nonlinearities is employed herein, and the FE model of the structural response of intact plates is validated with the available experimental data. In the common studies, based on One Factor at...
-
Ultimate compressive strength assessment of uncleaned and cleaned corroded plates with locked crack
PublicationThe work presented here investigates the structural response of cleaned corroded plates, subjected to compressive load in the presence of a locked crack, where the change of mechanical properties as a result of corrosion development and the cleaning process is also accounted for. A Finite Element model for assessing the compressive strength, considering geometric and material nonlinearities, is developed, and the analysed plates...
-
Concrete Compressive Strength Under Changing Environmental Conditions During Placement Processes
PublicationThe technological process of concrete production consists of several parts, including concrete mix design, concrete mix production, transportation of fresh concrete mix to a construction site, placement in concrete framework, and curing. Proper execution of these steps provides good quality concrete. Some factors can disturb the technological process, mainly temperature and excessive precipitation. Changing daily temperature and...
-
Advanced numerical modelling for predicting residual compressive strength of corroded stiffened plates
PublicationAn advanced methodology for predicting the residual compressive strength of corroded stiffened plates is developed here using the non-linear finite element method. The non-uniform loss of a plate thickness is accounted for on a macro-scale. In contrast, mechanical properties are changed using the constitutive model to reflect the corrosion degradation impact on a micro-scale. Three different stiffened plate thicknesses are considered,...
-
Correlation between Compressive Strength and Heat of Hydration of Cement Mortars with Siliceous Fly Ash
PublicationThis paper presents the results of calorimetric and strength tests of mortars with ordinary Portland cement and two substitution rates (10 and 20%) of cement by siliceous fly ash. The prepared samples were cured under isothermal conditions at four different temperatures: 23, 33, 43 and 53 °C. Heat of hydration was measured using an isothermal calorimeter dedicated to monitor the hydration process of cementitious composites such...
-
Machine-learning methods for estimating compressive strength of high-performance alkali-activated concrete
PublicationHigh-performance alkali-activated concrete (HP-AAC) is acknowledged as a cementless and environmentally friendly material. It has recently received a substantial amount of interest not only due to the potential it has for being used instead of ordinary concrete but also owing to the concerns associated with climate change, sustainability, reduction of CO2 emissions, and energy consumption. The characteristics and amounts of the...
-
Isothermal Calorimetry and Compressive Strength Tests of Mortar Specimens for Determination of Apparent Activation Energy
PublicationThe hydration process of cementitious materials involves a thermally activated reaction that depends on the composition of the mixture and the curing temperature. The main parameter affecting the temperature variation of cast-in-place concrete is the apparent activation energy, which can be used for the efficient prediction of the temperature evolution and maturity index of hardening concrete. This paper discusses two methods to...
-
Moisture Influence on Compressive Strength of Calcium Silicate Masonry Units–Experimental Assessment and Normative Calculations
Publication -
Feature Importance of Stabilised Rammed Earth Components Affecting the Compressive Strength Calculated with Explainable Artificial Intelligence Tools
Publication -
Active learning on stacked machine learning techniques for predicting compressive strength of alkali-activated ultra-high-performance concrete
PublicationConventional ultra-high performance concrete (UHPC) has excellent development potential. However, a significant quantity of CO2 is produced throughout the cement-making process, which is in contrary to the current worldwide trend of lowering emissions and conserving energy, thus restricting the further advancement of UHPC. Considering climate change and sustainability concerns, cementless, eco-friendly, alkali-activated UHPC (AA-UHPC)...
-
Predicting Compressive Strength of Cement-Stabilized Rammed Earth Based on SEM Images Using Computer Vision and Deep Learning
Publication -
Data-driven Models for Predicting Compressive Strength of 3D-printed Fiber-Reinforced Concrete using Interpretable Machine Learning Algorithms
Publication3D printing technology is growing swiftly in the construction sector due to its numerous benefits, such as intricate designs, quicker construction, waste reduction, environmental friendliness, cost savings, and enhanced safety. Nevertheless, optimizing the concrete mix for 3D printing is a challenging task due to the numerous factors involved, requiring extensive experimentation. Therefore, this study used three machine learning...
-
Effect of mixing method and particle size on hardness and compressive strength of aluminium based metal matrix composite prepared through powder metallurgy route
Publication -
Ultimate strength of stiffened plates subjected to compressive load and spatially distributed mechanical properties
PublicationThe present study deals with the ultimate strength of stiffened plates subjected to spatially distributed mechanical properties and compressive load. Normally, mean values of mechanical properties based on tensile tests are used to validate the numerical assessment with experimental results. However, mechanical properties may vary within a single specimen. To investigate the impact of that, random fields of yield stress and Young...
-
A Proposed Soft Computing Model for Ultimate Strength Estimation of FRP-Confined Concrete Cylinders
PublicationIn this paper, the feed-forward backpropagation neural network (FFBPNN) is used to propose a new formulation for predicting the compressive strength of fiber-reinforced polymer (FRP)-confined concrete cylinders. A set of experimental data has been considered in the analysis. The data include information about the dimensions of the concrete cylinders (diameter, length) and the total thickness of FRP layers, unconfined ultimate concrete...
-
Effect of coarse grain aggregate on strength parameters of two-stage concrete
Publication. Two-stage concrete (TSC) is a special type of concrete that the method of its construction and implementation is different from conventional one. In TSC, coarse aggregate particles are first placed in the formwork and voids between them are subsequently injected with a special cementations mixture. TSC has been successfully used in many applications, such as underwater construction, casting concrete sections congested with reinforcement...
-
Experimental ultimate strength assessment of stiffened plates subjected to marine immersed corrosion
PublicationThis study experimentally analyses the impact of marine immersed corrosion degradation on the compressive strength of the stiffened plates where the lower degradation levels were considered. The corrosion degradation test was accelerated by controlling the natural corrosion environmental factors, avoiding applying an electric current. Different groups of corrosion degradation levels and initial plate thicknesses were investigated....
-
Maturity curve for estimating the in-place strength of high performance concrete
PublicationThe paper presents the maturity curve for estimating the in-place early-age compressive strength of concrete. The development of appropriate maturity curve is a complex process. It is important to correctly determine the datum temperature and activation energy, which can be obtained in mortar tests. This paper describes an investigation of the accuracy of the maturity method to estimate the strength when different way to rate constant...
-
Structural Assessment of Reinforced Concrete Beams Incorporating Waste Plastic Straws
PublicationThe behavior of reinforced concrete beams containing fibers made of waste plastic straws (WPSs) under the three point bending test is examined. The effect of WPS fiber addition on the compressive and split tensile strength is reported. Four concrete mixes were prepared. The control mix PS-0 had a proportion of 1 cement: 1 sand: 2 coarse aggregate and a water cement ratio of 0.4. In the other three mixes PS-0.5, PS-1.5 and PS-3,...
-
FE analysis of support-specimen interaction of compressive experimental test
PublicationThe objective of this work is to investigate the support-specimen interaction during the compressive experimental testing of stiffened plates. The interaction is analyzed employing the nonlinear Finite Element Method using the commercial software ANSYS. The connection between the stiffened plate and testing supports is modelled with the use of contact elements, where several possible interaction scenarios are investigated, and...
-
Verification of Selected Calculation Methods Regarding Shear Strength in Reinforced and Prestressed Concrete Beams
PublicationThe purpose of this article was an attempt to compare selected calculation methods regarding shear strength in reinforced and prestressed concrete beams. Several calculation methods were tested. This included codes: PN-EN 1992-1-1:2008 [1], ACI 318- 14 [2] and fib Model Code for Concrete Structures 2010 [3]. The analysis also consists of methods published in technical literature. Calculations of shear strengths were made based...
-
Verification of selected calculation methods regarding shear strength in beams without web reinforcement
PublicationThe purpose of the article was to compare selected calculation methods regarding shear strength in reinforced concrete beams without web reinforcement. Several calculation methods were tested. This included codes: PN-EN 1992-1-1:2008, ACI 318-14 and fib Model Code for Concrete Structures 2010. The analysis also consists of authorial methods published in technical literature. Calculations of shear strengths were made based on experimental...
-
Design of experiments approach for ultimate strength assessment of corroded stiffened plates
PublicationThe impact of corrosion degradation on the ultimate strength of stiffened plates subjected to compressive loading is investigated. The DoE technique is used considering different plate and column slenderness ratios and corrosion severity. The FE method, considering geometrical and material nonlinearities, is employed. A two-stage corrosion degradation model is adopted. Firstly, a uniform thickness loss is adopted to reflect the...
-
Effects of Xanthan Gum Biopolymer on the Permeability, Odometer, Unconfined Compressive and Triaxial Shear Behavior of a Sand
PublicationBiopolymers, which are microbially induced polymers, can be used as an alternative material to improve engineering performance of soils. In this paper, a laboratory study of 0.075-1.0 mm size sand and biopolymer (i.e., xanthan gum) mixtures with various mix ratios (0%, 0.5%, 1.0%, and 1.5%) was performed. The materials, specimen preparation, and test methods are described, as are the results of a suite of permeability, odometer, unconfined...
-
Study on some of the strength properties of soft clay stabilized with plastic waste strips
PublicationIt is well known that if plastic wastes are not well managed, it has a negative impact on the environment as well as on human health. In this study, recycling plastic waste in form of strips for stabilizing weak subgrade soil is proposed. For this purpose, a weak clay soil sample was mixed with 0.2%, 0.3%, and 0.4% of plastic strips by weight of soil, and the experimental results were compared to the control soil sample with 0%...
-
Numerical and experimental study on effect of boundary conditions during testing of stiffened plates subjected to compressive loads
PublicationThis study analyses the effect of boundary conditions during testing on the structural behaviour stiffened plates with different thicknesses subjected to compressive loads. The goal of the compressive tests is to analyse the ultimate strength of a stiffened plate. During the test, relevant physical quantities are measured and investigated. The supporting structure's behaviour is investigated by analysing the force-displacements...
-
Experimental and numerical investigations of ultimate strength of imperfect stiffened plates of different slenderness
PublicationThe objective of this study is to analyse the behaviour of compressed stiffened plates of different slenderness using experimental and numerical methods. The presented results are part of a long-term project to investigate the ultimate strength of geometrically imperfect structures subjected to different degradation phenomena, including corrosion degradation and locked cracks. Several specimens were subjected to a uniaxial compressive...
-
Shear resistance of low height precast concrete lintels
PublicationThe scope of the paper is to investigate analytically and determine experimentally the shear resistance of low height reinforced precast concrete lintels. The chosen procedures included in national and international standards applied for the design of structural concrete elements to an estimation of shear behaviour of reinforced concrete elements are described. The characteristic and designed shear strength of precast concrete...
-
Proceedings of the fib Symposium 2019: Concrete - Innovations in Materials, Design and Structures 2019
PublicationDesigning a concrete mix is a process of synthesizing many components, it is not a simple process and requires extensive technical knowledge. The design process itself focuses on obtaining the required strength of concrete. Very often designing a concrete mix takes into account the need to maintain the proper water-demand and frost-resistance features. The parameters that influence the concrete class most significantly are the...
-
Highly sensitive large strain cellulose/multiwalled carbon nanotubes (MWCNTs)/thermoplastic polyurethane (TPU) nanocomposite foams: From design to performance evaluation
PublicationAerogel-based polymer composite foams are promising for large strain piezoresistive sensors, but their aerogel skeleton is partially destroyed during the foaming process, limiting their sensitivity. Herein, the thermoplastic polyurethane was synthesized on the aerogel skeleton to obtain cellulose/multiwalled carbon nanotubes (MWCNTs)/thermoplastic polyurethane (TPU) nanocomposite materials foamed with the aid of supercritical carbon...
-
Preparation and characterization of rigid polyurethane-polyglycerolnanocomposite foams
PublicationThis work reports on the preparation of polyurethane-polyisocyanurate (PUR-PIR) foams containing different polyglycerols and layered silicate nanoclays. The rigid polyurethane foams were obtained in a laboratory scale, in a single step method, from a two-component system with a NCO to OH groups ratio equal to two. The reaction mixture consisted of the proper amounts of a commercial oligoetherpolyol, polyglycerol, catalysts, water,...
-
Nano soil improvement technique using cement
PublicationNano soil-improvement is an innovative idea in geotechnical engineering. Nanomaterials are among the newest additives that improve soil properties. Herein, laboratory tests, such as unconfined compressive strength, direct shear test, and initial tests, were conducted to investigate the geotechnical properties of Kelachay clay with micro- and nanosized cement to evaluate its particles in untreated soil and observe changes in the...
-
Preparation and characterization of rigid polyurethane -polyglycerol nanocomposite foams
PublicationThis work reports on the preparation of polyurethane–polyisocyanurate (PUR–PIR) foams containing different polyglycerols and layered silicate nanoclays. The rigid polyurethane foams were obtained in a laboratory scale, in a single step method, from a two-component system with a NCO to OH groups ratio equal to two. The reaction mixture consisted of the proper amounts of a commercial oligoetherpolyol, polyglycerol, catalysts, water,...
-
Rigid polyurethane foams from a polyglycerol-based polyol
PublicationRigid polyurethane foams (rPUs) were synthesized by replacing 35 and 70 wt.% of petrochemical polyol with polyglycerol. Two types of polyglycerol with different molecular weights and hydroxyl numbers were used to obtain new ‘‘green’’ polyurethane–polyglycerol foams. The foams were prepared by a single step method for the ratio of NCO/OH groups equal to 2. rPUs synthesized with polyglycerol showed regular cellular structure, with...
-
Prediction of cast-in-place concrete strength of the extradosed bridge deck based on temperature monitoring and numerical simulations
PublicationThe work is devoted to the implementation of a monitoring system for high performance concrete embedded in the span of an extradosed bridge deck using a modified maturity method augmented by numerical simulations conducted by the authors’ FEM code. The paper presents all research stages of bridge construction and considers the conclusions drawn from the results of laboratory tests, field measurements, and numerical calculations....
-
CONCRETE MIX DESIGN USING ABRAMS AND BOLOMEY METHODS
PublicationOne way to reduce the consumption of cement is to optimize its use. Many known methods of concrete design, based on the Abrams law and the Bolomey method. Therefore, the authors chose those methods for analysis. The concrete composition with the assumed strength class, calculated by any method differs significantly. This applies especially to the cement content, as its content in the composition of concrete varies from 20 to 50%....
-
Assessment of the application of CEM III with exposed aggregate as an alternative to CEM I for road pavements
PublicationThe article presents a results of study on the impact of replacing CEM I SR3/NA by CEMIII/A LH/HSR/NAon the mechanical properties and durability of pavement concrete with exposed aggregate. Was used granite aggregate and washed sand. Water/cement () ratio in the tested concretes constituted 0.35 and 0.4 and part of the cement was replaced with a 5% addition of natural pozzolana – zeolite. Compressive strength tests were performed...
-
Properties of Old Concrete Built in the Former Leipziger Palace
PublicationThis research aims to determine the mechanical, chemical, and physical properties of old concrete used in the former Leipziger Palace in Wrocław, Poland. The cylindrical specimens were taken from the basement concrete walls using a concrete core borehole diamond drill machine. The determination of the durability and strength of old concrete was based on specified chosen properties of the old concrete obtained through the following...
-
Predicting Performance of Lightweight Concrete with Granulated Expanded Glass and Ash Aggregate by Means of Using Artificial Neural Networks
PublicationLightweight concrete (LWC) is a group of cement composites of the defined physical, mechanical, and chemical performance. The methods of designing the composition of LWC with the assumed density and compressive strength are used most commonly. The purpose of using LWC is the reduction of the structure’s weight, as well as the reduction of thermal conductivity index. The highest possible strength, durability and low thermal conductivity...
-
Sustainable utilization of copper post-flotation waste in cement composites
PublicationThe current way of managing the copper ore flotation waste is by placing it in waste neutralization facilities. However, flotation waste has great potential in application in cement composites. The article presents the detailed characteristics of post-flotation waste (PFW) and three types of cements: CEM I, CEM II/B-V, and CEM III/A, 42.5 MPa class. The post-flotation waste added for 20% of the cement mass increase the water demand...
-
Wpływ mikrosfer-frakcji odpadów paleniskowych na mikrostrukturę i wybrane właściwości uzytkowe
PublicationIn this study, the microspheres samples were collected from national power station „Dolna Odra”. In this study, the following materials were used: Portland cement class 32,5R and aggregates of 2-8 and 8-16 fractions and natural sand with a maximum grain size of 2 mm and water. Concrete mixtures were made with microspheres additions of 15%, 25% and 40%. A constant water to binder ratio (w/b) of 0,52 was used throughout the investigation....
-
Mechanical properties of two-stage concrete modified by silica fume
PublicationAbstract. Two-stage concretes, despite the fact that they have proven themselves in various types of construction, have not been studied to the same extent as traditional heavy concretes. Therefore, the article developed the composition of frame concrete with various additives in the composition of the cement-sand mortar. A comparison of the mechanical characteristics of the developed compositions with the addition of silica fume...
-
Chemical, Physical, and Mechanical Properties of 95-Year-Old Concrete Built-In Arch Bridge
PublicationThis research aimed to determine the durability and strength of an old concrete built-in arch bridge based on selected mechanical, physical, and chemical properties of the concrete. The bridge was erected in 1925 and is located in Jagodnik (northern Poland). Cylindrical specimens were taken from the side ribs connected to the top plate using a concrete core borehole diamond drill machine. The properties of the old concrete were...
-
Monitoring of concrete curing in extradosed bridge supported by numerical simulation
PublicationThe paper describes a mathematical model of concrete curing taking into account kinetics of setting reactions. The numerical model is implemented in the author’s program that was used to monitor thermal effects recorded in the concrete bottom plate of the extradosed bridge. Numerical approach was verified by experimental measurements and used for assessment of the current compressive strength due to degree of hydration of fresh...
-
Influence of the Addition of Recycled Aggregates and Polymer Fibers on the Properties of Pervious Concrete
PublicationThe aim of the study was to check the possibility of reusing aggregate from recycled concrete waste and rubber granules from car tires as partial substitution of natural aggregate. The main objective was to investigate the effects of recycled waste aggregate modified with polymer fibers on the compressive and flexural strength, modulus of elasticity and permeability of pervious concrete. Fibers with a multifilament structure and...
-
Micro‑ and nano‑ bentonite to improve the strength of clayey sand as a nano soil‑improvement technique
PublicationNano-additives results in the formation of nano-cementation (NC). This process is recently used to improve the durability of various building materials. NC used to improve the strength of untreated soil materials, also known as nano soil-improvement (NSI). In few years, the role of nano-additives in various types of soils were developed. In this research, the role of micro- and nano- size of bentonite as soil stabilizer was evaluated...
-
Model-Based Adaptive Machine Learning Approach in Concrete Mix Design
PublicationConcrete mix design is one of the most critical issues in concrete technology. This process aims to create a concrete mix which helps deliver concrete with desired features and quality. Contemporary requirements for concrete concern not only its structural properties, but also increasingly its production process and environmental friendliness, forcing concrete producers to use both chemically and technologically complex concrete...
-
Drill holes decrease cancellous bone strength: A comparative study of 33 paired osteoporotic human and 9 paired artificial bone samples
PublicationThis study was designed to compare compressive strength of cancellous bone retrieved from the femoral head in a specimen with and without guide wire hole, with comparison to synthetic bone samples. Femoral heads retrieved from 33 patients who sustained femoral neck fractures and underwent hip arthroplasty were cut into cuboids leaving two matching samples from the same femoral head. Similar samples were prepared from synthetic femurs....
-
Study the impact of design method preference on the usefulness of concrete and on CO2 emissions
PublicationPurpose – The research investigates the impact of concrete design methods on performance, emphasizing environmental sustainability. The study compares the modified Bolomey method and Abrams’ law in designing concretes. Significant differences in cement consumption and subsequent CO2 emissions are revealed. The research advocates for a comprehensive life cycle assessment, considering factors like compressive strength, carbonation...