Search results for: implants
-
Polyurethanes modified with natural polymers for medical application. I. Polyurethanes/ Chitosan and polyurethane/collagen.
PublicationFor over three decades polyurethanes (PUR or PU) have been reported for application in a variety of medical devices. These polymers consist of hard and soft segments, which allow for more subtle control of their structure and properties. By varying the composition of the different segments, properties of PURcan be tuned up for use in many areas of medicine. Recently there is a great interest in modification of biomedical PUR with...
-
The Morphology, Structure, Mechanical Properties and Biocompatibility of Nanotubular Titania Coatings before and after Autoclaving Process
PublicationThe autoclaving process is one of the sterilization procedures of implantable devices. Therefore, it is important to assess the impact of hot steam at high pressure on the morphology, structure, and properties of implants modified by nanocomposite coatings. In our works, we focused on studies on amorphous titania nanotubes produced by titanium alloy (Ti6Al4V) electrochemical oxidation in the potential range 5–60 V. Half of the...
-
Powder metallurgy of the porous Ti-13Nb-13Zr alloy of different powder grain size
PublicationThe objective of the present project was to determine the effects of powder granulation (fraction of grain size) for the Ti-13Nb-13Zr alloy, produced by powder metallurgy, on its porosity, grain cohesion, compressive strength, and Young`s modulus. Two powder fractions, 45–105 µm, and 106–250 µm were applied. The 50 mass pct of NH4HCO3 was added as a space holder. The specimens were in compaction stage uniaxially pressed at pressure...
-
In vivo performance of intraperitoneal onlay mesh after ventral hernia repair
PublicationBackground: Ventral hernia repair needs to be improved since recurrence, postoperative pain and other complications are still reported in many patients. The behavior of implants in vivo is not sufficiently understood to design a surgical mesh mechanically compatible with the human abdominal wall. Methods: This analysis was based on radiological pictures of patients who underwent laparoscopic ventral hernia repair. The pictures...
-
Mechanical Properties and Wear Susceptibility Determined by Nanoindentation Technique of Ti13Nb13Zr Titanium Alloy after “Direct Laser Writing”
PublicationLaser treatment has often been applied to rebuild the surface layer of titanium and its alloys destined for long-term implants. Such treatment has always been associated with forming melted and re-solidified thin surface layers. The process parameters of such laser treatment can be different, including the patterning of a surface by so-called direct writing. In this research, pulse laser treatment was performed on the Ti13Nb13Zr...
-
Vascular stents - materials and manufacturing technologies
PublicationThe objective of this article is to present materials and technology for the manufacture of vascular stents with appropriate design requirements. The use of the right material is very important in implantology. A biomaterial introduced into the circulatory system must be biocompatible and hemocompatible. At the same time, it should not initiate toxic, mutagenic, or immunological reactions. Currently, 316L stainless steel (316L...
-
Polynomial Chaos Expansion in Bio-and Structural Mechanics
PublicationThis monograph presents a probabilistic approach to modelling the mechanics of materials and structures where the modelled performance is influenced by uncertainty in the input parameters. The work is interdisciplinary and the methods described are applied to medical and civil engineering problems. The motivation for this work was the necessity of mechanics-based approaches in the modelling and simulation of implants used in the...
-
Electrophoretic deposition (EPD) of nanohydroxyapatite - nanosilver coatings on Ti13Zr13Nb alloy
PublicationTitanium and its alloys are the biomaterials most frequently used in medical engineering, especially as parts of orthopedic and dental implants. The surfaces of titanium and its alloys are usually modified to improve their biocompatibility and bioactivity, for example, in connection with the deposition of hydroxyapatite coatings. The objective of the present research was to elaborate the technology of electrophoretic deposition...
-
Polynomial Chaos Expansion in Bio- and Structural Mechanics
PublicationThis thesis presents a probabilistic approach to modelling the mechanics of materials and structures where the modelled performance is influenced by uncertainty in the input parameters. The work is interdisciplinary and the methods described are applied to medical and civil engineering problems. The motivation for this work was the necessity of mechanics-based approaches in the modelling and simulation of implants used in the repair...
-
Biological and mechanical properties of bone cement with nanoparticles - in vivo and in vitro research
PublicationDespite antibiotics preventive treatment, before and after an implant implementation, risk of infection are real. These infections at the implant surface develop in a few months after applying them into the body. To prevent the development of bacteria and to reduce the risk of infection, implants coated with nanoparticles come into use. The Mechanical Department of the Technical University of Gdańsk carried out a research with...
-
Fully Tunable Analog Biquadratic Filter for Low-Power Auditory Signal Processing in CMOS Technologies
PublicationA novel Gm-C structure of a second-order continuous-time filter is proposed that allows for the independent control of the filter’s natural frequency (ω0) and quality factor (Q). The structure consists of two capacitors and four transconductors. Two transconductors together with the capacitors form a lossless second-order circuit with tunable ω0. The other two transconductors form a variable gain amplifier (VGA) which realizes...
-
Experimental study on the effect of selected sterilization methods on mechanical properties of polylactide FFF specimens
PublicationPurpose: Biodegradable polymers are widely used in personalized medical devices or scaffolds for tissue engineering. The manufacturing process should be finished with sterilization procedure. However, it is not clear how the different sterilization methods have an impact on the mechanical strength of the three-dimensional (3D)-printed parts, such as bone models or personalized mechanical devices. This paper aims to present the...
-
Green engineered biomaterials for bone repair and regeneration: Printing technologies and fracture analysis
PublicationDespite the exceptional self-regeneration properties of bone, severe injuries often require additional surgical intervention such as using artificial bone constructs. These structures need to meet a number of criteria regarding their structure, performance, alongside the rate and the mechanism of erosion and fracture when implanted, for stimulating the regeneration of defected bone and, more critically providing support in the...
-
Is mesh fixation necessary in laparoendoscopic techniques for M3 inguinal defects? An experimental study.
Publicationrepairs, in case of large direct hernias (M3) mesh fixation is recommended to reduce recurrence risk. Despite lack of highquality evidence, the recommendation was upgraded to strong by expert panel. The authors conducted a research experiment to verify the hypothesis that it is possible to preserve the mesh in the operating field in large direct hernias (M3) without the need to use fixing materials. Method The authors conducted...
-
The early failure of the gamma nail and the dynamic hip screw in femurs with a wide medullary canal. A biomechanical study of intertrochanteric fractures
PublicationBackground: Intertrochanteric fractures may occur in a bone with a wide medullary canal that may lead to significant mobility of a intramedullary nail, contrary to an extramedullary device. This study evaluates the Dynamic Hip Screw and the gamma nail in AO 31.A2.1 fractures in these circumstances. Methods: Synthetic femora with canals drilled to 18 mm were used. Five fixation types were examined: a 2 - hole and a 4 – hole Dynamic...
-
Mechanical behaviour of knit synthetic mesh used in hernia surgery
PublicationPurpose: There is a discussion in literature concerning mechanical properties and modelling of surgical meshes. An important feature of elastic modulus dependency on load history is taken into account in this paper, as implants are subjected to variable loading during human activity. The example of DynaMesh®-IPOM surgical implant is studied. Methods: The analysis is based on failure tension tests and cyclic loading and unloading...
-
PARAMETERS OF THE ELECTROPHORETIC DEPOSITION PROCESS AND ITS INFLUENCE ON THE MORPHOLOGY OF HYDROXYAPATITE COATINGS. REVIEW
PublicationMetallic materials intended for bone implants should exhibit not only appropriate mechanical properties, but also high biocompatibility. The surface treatment modifications, for example acidic treatment, laser treatment, ion implantation and deposition of highly biocompatible coatings, are practiced. One of the most popular methods of surface modification is to deposit hydroxyapatite (HAp) coatings. HAp naturally occurs in human...
-
Electrophoretic Deposition and Characterization of Chitosan/Eudragit E 100 Coatings on Titanium Substrate
PublicationCurrently, a significant problem is the production of coatings for titanium implants, which will be characterized by mechanical properties comparable to those of a human bone, high corrosion resistance, and low degradation rate in the body fluids. This paper aims to describe the properties of novel chitosan/Eudragit E 100 (chit/EE100) coatings deposited on titanium grade 2 substrate by the electrophoretic technique (EPD). The deposition...
-
Biological and mechanical properties of bone cement with nanoarticles - in vitro and in vivo research
PublicationDespite antibiotic preventive treatment both before and after implant implementation, the risks of infection are real. These infections develop at the implant surface a few months after inserting them into the body. To prevent the development of bacteria and reduce the risk of infection, implants coated with nanoparticles are used. The Mechanical Department of the Technical University of Gdansk carries out research into using bone...
-
Preparation and properties of composite coatings, based on carbon nanotubes, for medical applications
PublicationThe coatings based on carbon nanotubes (CNTs) are increasingly developed for their applications, among others, in medicine, in particular for implants in implantology, cardiology, and neurology. The present review paper aims at a detailed demonstration of diferent preparation methods for such coatings, their performance, and relationships between deposition parameters and microstructure and material, mechanical, physical, chemical,...
-
Effect of pulse laser treatment at different process variables on mechanical behavior of carbon nanotubes electrophoretically deposited on titanium alloy
PublicationPurpose: Titanium and its alloys are widely used as biomaterials for long-term implants, but they are usually surface-modified due to their weak bioactivity and wear resistance. Laser processing was used to modify the surface layer, and elemental carbon was a component of the deposited coatings. This research aims to use a combination of both methods based on preliminary electrophoretic deposition of multi-wall carbon nanotubes...
-
Assessment of Surface Water Resources Based on Different Growth Scenarios, for Borkena River Sub-basin, Awash River Basin, Ethiopia
PublicationThe total annual river flow at the Awash Kombolcha sub-basin of the Borkena river station was estimated to be 4.6 billion cubic meters by 2019-2030. The current average annual flow at the exit measurement station is 544.5Mm3 of the water resources available in the study area. The monthly peak flow of the Borkena River occurs from July to September. In addition, the highest monthly average flow is in August and the lowest is...
-
Nano-particle doped hydroxyapatite material evaluation using Spectroscopic Polarization Sensitive Optical Coherence Tomography
PublicationBio-ceramics such as hydroxyapatite (HAp) are widely used materials in medical applications, especially as an interface between implants and living tissues. There are many ways of creating structures from HAp like electrochemical assisted deposition, biomimetic, electrophoresis, pulsed laser deposition or sol-gel processing. Our research is based on analyzing the parameters of the sol-gel method for creating thin layers of HAp....
-
Deposition of phosphate coatings on titanium within scaffold structure
PublicationPurpose: Existing knowledge about the appearance, thickness, and chemical composition of phosphate coatings on titanium inside porous structures is insufficient. Such knowledge is important for the design and fabrication of porous implants. Methods: Metallic scaffolds were fabricated by selective laser melting of 316L stainless steel powder. Phosphate coatings were deposited on Ti sensors placed either outside the scaffolds or...
-
Structural investigations of niobium-doped bioactive calcium-phosphate glass-ceramics by means of spectroscopic studies
PublicationSynthetic calcium-phosphate based glasses and glass-ceramics play a crucial role in the development of tissue engineering. These materials have a high biocompatibility with biological analogues, excellent ability to undergo varying degrees of resorbability and due to their non-toxicity and relatively high bioactivity they are commonly used as bone and dental implants. A substantial research effort is devoted to improve synthetic...
-
Biomechanical causes for failure of the Physiomesh/Securestrap system
PublicationThis study investigates the mechanical behavior of the Physiomesh/Securestrap system, a hernia repair system used for IPOM procedures associated with high failure rates. The study involved conducting mechanical experiments and numerical simulations to investigate the mechanical behavior of the Physiomesh/Securestrap system under pressure load. Uniaxial tension tests were conducted to determine the elasticity modulus of the Physiomesh...
-
The Influence of Laser Alloying of Ti13Nb13Zr on Surface Topography and Properties
PublicationThe laser alloying is a continually developing surface treatment because of its significant and specific structuration of a surface. In particular, it is applied for Ti alloys, being now the most essential biomaterials` group for load-bearing implants. The present research was performed on the Ti13Nb13Zr alloy subject to laser modification in order to determine the treatment effects on surface topography and its some mechanical...
-
Osteoblast and bacterial cell response on RGD peptide‐functionalized chitosan coatings electrophoretically deposited from different suspensions on Ti13Nb13Zr alloy
PublicationMetallic materials for long-term load-bearing implants still do not provide high antimicrobial activity while maintaining strong compatibility with bone cells. This study aimed to modify the surface of Ti13Nb13Zr alloy by electrophoretic deposition of a chitosan coating with a covalently attached Arg-Gly-Asp (RGD) peptide. The suspensions for coating deposition were prepared in two different ways either using hydroxyacetic acid...
-
Mechanical and Corrosion Properties of Laser Surface-Treated Ti13Nb13Zr Alloy with MWCNTs Coatings
Publication: Titanium and its alloys is the main group of materials used in prosthetics and implantology. Despite their popularity and many advantages associated with their biocompatibility, these materials have a few significant disadvantages. These include low biologic activity—which reduces the growth of fibrous tissue and allows loosening of the prosthesis—the possibility of metallosis and related inflammation or other allergic reactions,...
-
Tensile and Fatigue Behavior of Additive Manufactured Polylactide
PublicationThis article presents the results of monotonic tensile and fatigue tests conducted on commercial polylactide or polylactic acid (PLA). The results of fatigue tests for this material present in the literature are limited, especially for additive manufactured elements. The specimens were manufactured using the injection molding and the fused filament fabrication (FFF) method. The FFF specimens were divided into five subgroups, depending...
-
Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films — Coating characterization and first cell biological results
PublicationAlthough titaniumand its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone....
-
A Multi Rig Screening Test for Thin Ceramic Coatings in Bio - Tribological Applications
PublicationA method is presented for the comparative testing of wear resistance of ceramic coatings made from materials potentially feasible in tribo - medical applications, mainly orthopaedic implants made from ceramics coated metals for low cost, long life and low wear particle emission into the body. The method was devised as the main tool for use in research and is comprised of flat on flat and ball on flat surface (sliding) tests. Seven...
-
Anticancer imidazoacridinone C-1311 inhibits hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) and angiogenesis
PublicationAntitumor imidazoacridinone C-1311 is a DNA-reactive topoisomerase II and FLT3 receptor tyrosine kinase inhibitor. Here, we demonstrate the mechanism of C-1311 inhibitory action on novel targets: hypoxia-inducible factor-1α (HIF-1α), vascular-endothelial growth factor (VEGF), and angiogenesis. In a cell-free system, C-1311 prevented HIF-1α binding to an oligonucleotide encompassing a canonical hypoxia-responsive element (HRE),...
-
Spectroscopic studies of Nb-doped tricalcium phosphate glass-ceramics prepared by sol-gel method
PublicationCalcium-phosphate based glasses and glass-ceramics play a crucial role in the tissue engineering development. Apart from their high biocompatibility and excellent ability to undergo varying degrees of resorbability1, they exhibit relatively high bioactivity and due to that they are commonly used as bone and dental implants. A substantial research effort is devoted to improve calcium-phosphate materials physico-chemical properties...
-
Katarzyna Arkusz dr hab. inż.
People -
Preparation and Characterization of Diamond-like Carbon Coatings for Biomedical Applications—A Review
PublicationDiamond-like carbon (DLC) films are generally used in biomedical applications, mainly because of their tribological and chemical properties that prevent the release of substrate ions, extend the life cycle of the material, and promote cell growth. The unique properties of the coating depend on the ratio of the sp3/sp2 phases, where the sp2 phase provides coatings with a low coefficient of friction and good electrical conductivity,...
-
Reactions on the surface of the implant under the influence of biofilm
PublicationThe contact of a biomaterial with the biological environment in in vitro and in vivo tests leads to the production of a particular ecosystem in which the active roles perform both, the material surface and the extracellular matrix protein forming a biofilm. Proteins affect cell and bacteria adhesion processes, biological activity of cells and activation of inflammatory response.The knowledge of the reaction mechanisms active on...
-
Hydroxyapatite deposition on the laser modified Ti13Nb13Zr alloy
PublicationThe Ti13Nb13Zr alloy was subjected to laser modification with the Nd:YAG laser provided that such treatment would increase the surface roughness followed improved adhesion of hydroxyapatite (HAp) coatings The hydroxyapatite was deposited by electrophoretic method in suspension of 0.5 g HA powder and 100 ml ethyl alcohol. The deposition was carried out for 10 min at 10 V voltage followed by drying at room temperature for 24 h and...
-
SIMULATION OF PROCEED® SURGICAL MESH APPLIED TO VENTRAL HERNIA REPAIR
PublicationIn the present research, Proceed® implant is considered. The system is subjected to short-time dynamic pressure load, similar to post-operative cough naturally occurring in human abdomen. The model refers to a clinical case of 5cm of hernia operated by Proceed implant fixed by 15 joints every 3cm around the orifice. The simulations of the implanted mesh are performed by means of the Finite Element Method. The implant is modelled...
-
Sustainable polymers targeted at the surgical and otolaryngological applications: Circularity and future
PublicationThe ongoing climate changes, high air and noise pollution have significant impact on humans’ health. This influence is especially visible in otolaryngology, which focuses on respiratory and hearing systems disfunctions. However, even though surgeries are done in response to diseases related to climate changes, they also have a negative impact on the environment, mostly connected with the inherence of single-use fossil fuel derived...
-
Wiktoria Wojnicz dr hab. inż.
PeopleDSc in Mechanics (in the field of Biomechanics) - Lodz Univeristy of Technology, 2019 PhD in Mechanics (in the field of Biomechanics) - Lodz Univeristy of Technology, 2009 (with distinction) List of papers (2009 - ) Wojnicz W., Wittbrodt E., Analysis of muscles' behaviour. Part I. The computational model of muscle. Acta of Bioengineering and Biomechanics, Vol. 11, No.4, 2009, p. 15-21 Wojnicz W., Wittbrodt E., Analysis of...