Search results for: BOUNDARY LAYER
-
The orthogonalization of objects simplified using the Chrobak’s method representing groups of buildings in Kartuzy district - scale 1:10000
Open Research DataThe process of automatic generalization is one of the elements of spatial data preparation for the purpose of creating digital cartographic studies. The presented data include a part of the process of generalization of building groups obtained from the national geodesy and cartography resource from BDOT10k (10k topographic database) [1].
-
Geo-engineering computer simulation seems attractive but is it the real world?
PublicationCorrect formulation of the differential equation system for equilibriom conditions of subsoil, especially in terms of controlled numerical calculation, is discussed. The problem of solution stability is also considered. The solution of problems, which are ill-posed, have no practical value in the majority of cases and is this way the engineering prognosis can lead to real disaster. The object of this paper is quite relevant if...
-
Operational Enhancement of Numerical Weather Prediction with Data from Real-time Satellite Images
PublicationNumerical weather prediction (NWP) is a rapidly expanding field of science, which is related to meteorology, remote sensing and computer science. Authors present methods of enhancing WRF EMS (Weather Research and Forecast Environmental Modeling System) weather prediction system using data from satellites equipped with AMSU sensor (Advanced Microwave Sounding Unit). The data is acquired with Department of Geoinformatics’ ground...
-
Numerical tests of time-stepping schemes in the context of FEM for 6-field shell dynamics
PublicationThe paper deals with integration of dynamic equations of irregular shells performed with relatively long time steps. Numerical instability appearing often in this kind of analysis motivated the authors to present some studies based on numerical tests referring to convergence problems of finite element analysis as well the applied stability conditions. The analysis is carried out on simulations of shell dynamics with the where the...
-
Positive solutions to fractional differential equations involving Stieltjes integral conditions
PublicationIn this paper, we investigate nonlocal boundary value problems for fractional differential equations with dependence on the first-order derivatives and deviating arguments. Sufficient conditions which guarantee the existence of at least three positive solutions are new and obtained by using the Avery–Peterson theorem. We discuss problems (1) and (2) when argument b can change the character on [0, 1], so in some subinterval I of...
-
Exact modal absorbing boundary condition for waveguide simulations - discrete Green's function approach
PublicationA modal absorbing boundary condition (ABC) based on the discrete Green's function (DGF) is introduced and applied for termination of waveguides simulated by means of the finite-difference time-domain (FDTD) method. The differences between the developed approach and implementations already demonstrated in the literature are presented. By applying DGF, a consistent theoretical approach to modal ABC in the FDTD method is obtained....
-
Weak Solutions within the Gradient-Incomplete Strain-Gradient Elasticity
PublicationIn this paper we consider existence and uniqueness of the three-dimensional static boundary-value problems in the framework of so-called gradient-incomplete strain-gradient elasticity. We call the strain-gradient elasticity model gradient-incomplete such model where the considered strain energy density depends on displacements and only on some specific partial derivatives of displacements of first- and second-order. Such models...
-
Efficient Finite Element Analysis of Axially Symmetrical Waveguides and Waveguide Discontinuities
PublicationA combination of the body-of-revolution and finite element methods is adopted for full-wave analysis of waveguides and waveguide discontinuities involving angular field variation. Such an approach is highly efficient and much more flexible than analytical techniques. The method is performed in two different cases: utilizing a generalized impedance matrix to determine the scattering parameters of a single waveguide section and utilizing...
-
Characterization of Bi6Fe2Ti3O18 Ceramics with Impedance Spectroscopy
PublicationIn the present research the tool of impedance spectroscopy was utilized to characterize dielectric behavior of Aurivillius-type ceramics of Bi6Fe2Ti3O18 composition fabricated by hot pressing method from the stoichiometric mixture of oxides Bi2O3, TiO2 and Fe2O3. Impedance spectroscopy was applied to characterize dielectric response of bulk, grain boundary, and material/electrode interfaces of the fabricated polycrystalline ceramic...
-
Periodic expansion in determining minimal sets of Lefschetz periods for Morse–Smale diffeomorphisms
PublicationWe apply the representation of Lefschetz numbers of iterates in the form of periodic expansion to determine the minimal sets of Lefschetz periods of Morse–Smale diffeomorphisms. Applying this approach we present an algorithmic method of finding the family of minimal sets of Lefschetz periods for Ng, a non-orientable compact surfaces without boundary of genus g. We also partially confirm the conjecture of Llibre and Sirvent (J Diff...
-
Improvements to the two-phase sandwich method for calculating the melting points of pure metals
PublicationThe thermophysical properties of metal alloys are often investigated via molecular dynamics (MD) simulations.An exact and reliable estimation of the thermophysical parameters from the MD data requires a properly and carefullyelaborated methodology. In this paper, an improved two-phase sandwich method for the determination of the metal meltingtemperature is proposed, based on the solid-liquid equilibrium theory. The new method was...
-
Dynamics of Ice Jam Formation and Release
PublicationThe numerical model DynaRICE and its application to ice jam formation and release is presented. The model is a two-dimensional coupled flow and ice dynamic model. The ice dynamic component, which includes both the internal ice resistance and boundary friction on ice motion, uses a Lagrangian SPH method. The hydrodynamic component of the model uses a streamline upwind finite element method, which is capable of simulating trans-critical...
-
The field–dependent interface recombination velocity for organic–inorganic heterojunction
PublicationWe have derived an analytical formula which describes the field–dependent interface recombination velocity for the boundary of two materials characterized by different permittivities. The interface recombination of charge carriers has been considered in the presence of image force Schottky barrier. We suggest that this effect may play an important role in the loss of current for organic–inorganic hybrid heterojunctions. It has...
-
Absorbing Boundary Conditions Derived Based on Pauli Matrices Algebra
PublicationIn this letter, we demonstrate that a set of absorbing boundary conditions (ABCs) for numerical simulations of waves, proposed originally by Engquist and Majda and later generalized by Trefethen and Halpern, can alternatively be derived with the use of Pauli matrices algebra. Hence a novel approach to the derivation of one-way wave equations in electromagnetics is proposed. That is, the classical wave equation can be factorized...
-
Pre-oxidation of porous ferritic Fe22Cr alloys for lifespan extension at high-temperature
PublicationPre-oxidation of porous ferritic Fe22Cr alloys was extensively studied in this paper. Weight gain measurements and SEM analysis revealed that pre-oxidation performed at 900◦C for 40 min increased the lifespan of the alloy. A Cr evaporation study did not disclose any significant influence of the pre-oxidation process on the Cr content in the alloy. For a more detailed assessment, TEM imaging and X-ray tomography measurements of...
-
Nonlinear Free and Forced Vibrations of a Hyperelastic Micro/Nanobeam Considering Strain Stiffening Effect
PublicationIn recent years, the static and dynamic response of micro/nanobeams made of hyperelasticity materials received great attention. In the majority of studies in this area, the strain-stiffing effect that plays a major role in many hyperelastic materials has not been investigated deeply. Moreover, the influence of the size effect and large rotation for such a beam that is important for the large deformation was not addressed. This...
-
Implementation of Hermite-Ritz method and Navier’s Technique for Vibration of Functionally Graded Porous Nanobeam Embedded in Winkler-Pasternak Elastic Foundation Using bi-Helmholtz type of nonlocal elasticity
PublicationPresent study is devoted to investigating the vibration characteristics of Functionally Graded (FG) porous nanobeam embedded in an elastic substrate of Winkler-Pasternak type. Classical beam theory (CBT) or Euler-Bernoulli beam theory (EBT) has been incorporated to address the displacement of the FG nanobeam. Bi-Helmholtz type of nonlocal elasticity is being used to capture the small scale effect of the FG nanobeam. Further, the...
-
Electronic structure calculations in electrolyte solutions: Methods for neutralization of extended charged interfaces
PublicationDensity functional theory (DFT) is often used for simulating extended materials such as infinite crystals or surfaces, under periodic boundary conditions (PBCs). In such calculations, when the simulation cell has non-zero charge, electrical neutrality has to be imposed, and this is often done via a uniform background charge of opposite sign (“jellium”). This artificial neutralization does not occur in reality, where a different...
-
Numerical analysis of crack propagation in silicone nitride
PublicationThe properties of ceramics, specifically low density, high hardness, high temperature capability and low coefficient of thermal expansion are of most interest to rolling element manufacturers. The influence of ring crack size on rolling contact fatigue failure has been studied using numerical fracture analysis. Such cracks are very often found on ceramic bearing balls and decrease fatigue life rapidly. The numerical calculation...
-
Discussion of “Development of an Accurate Time integration Technique for the Assessment of Q-Based versus h-Based Formulations of the Diffusion Wave Equation for Flow Routing” by K. Hasanvand, M.R. Hashemi and M.J. Abedini
PublicationThe discusser read the original with great interest. It seems, however, that some aspects of the original paper need additional comments. The authors of the original paper discuss the accuracy of a numerical solution of the diffusion wave equation formulated with respect to different state variables. The analysis focuses on nonlinear equations in the form of a single transport equation with the discharge Q (volumetric flow rate)...
-
Junctions In Shell Structures: A Review
PublicationMany shell structures used in modern technology consist of regular shell parts joined together along their common boundaries. We review different theoretical, numerical, and experimental approaches to modelling, analyses and design of the compound shell structures with junctions. Several alternative forms of boundary, continuity and jump conditions at the singular midsurface curves modelling the shell junction are reviewed. We...
-
About being entrepreneurial in challenging environments – theorizing on the social enterprise behavior in Poland
PublicationEntrepreneurial behaviors in challenging institutional environments have been widely investigated in the literature. One of the characteristics of these environments is resource scarcity. This is particularly valid in the context of social entrepreneurship. The aim of this paper is to identify entrepreneurial behaviors in social entrepreneurship and what is happening behind these processes in the context of transition country,...
-
Smooth Particle Hydrodynamics (SPH) approach in simulating large penetration into soil
PublicationA study of Smooth Particle Hydrodynamics (SPH) approach for predicting large soil deformation is presented. Theoretical basics of SPH method, including the equations governing, discussion of the importance of smoothing function length, contact formulation, boundary treatment and finally utilization in hydrocodes simulations are presented. An application of SPH to a real case of large penetrations (crater creating) into soil caused...
-
Wave propagation in damage assessment of ground anchors
PublicationThe inspection possibilities of ground anchors are limited to destructive test such as pull-out test. Guided wave propagation gives an opportunity to develop an inspection system dedicated to determine the condition of inspected element without violation of their integrity. In this paper the experimental study on wave propagation in laboratory models of ground anchors are presented. Experiments were conducted for different bonding...
-
Energy conversion in systems-contained laser irradiated metallic nanoparticles - comparison of results from analytical solutions and numerical methods
PublicationThis work introduces the theoretical method of metallic nanoparticles’ (NPs’) heat and mass transfer where the particles are coated on a surface (base), together with considering the case wherein nanoparticles move freely in a pipe. In order to simulate the heat transfer, energy and radiative transfer equations are adjusted to the considered issue. NPs’ properties are determined following the nanofluidic theories, whereas absorption...
-
Evaluation of the Effectiveness of Methods for Delimitation of the Boundaries of Registered Parcels in the Process of Modernization of Land and Building Registration
PublicationIn the article, a comparative analysis of two methods for delimitation of the boundaries of registered parcels was carried out: the method of direct measurement in the field and the photogrammetric method. One of the analyzed factors was the attendance of parcels’ owners during the development of boundary recognition agreements. Research has shown that in this aspect the method of direct measurement...
-
EXPERIMENTAL AND NUMERICAL VALIDATION OF THE IMPROVED VORTEX METHOD APPLIED TO CP745 MARINE PROPELLER MODEL
PublicationThe article presents a numerical analysis of the CP745 marine propeller model by means of the improved vortex method and CFD simulations. Both numerical approaches are validated experimentally by comparing with open water characteristics of the propeller. The introduced modification of the vortex method couples the lifting surface approach for the propeller blades and the boundary element method for the hub. What is more, a...
-
Standing Waves in One-Dimensional Resonator Contaning an Ideal Isothermal Gas Affected by the Constant Mass Force
PublicationThe study is devoted to standing acoustic waves in one-dimensional planar resonator which containing an ideal gas. A gas is affected by the constant mass force. Two types of physically justified boundary conditions are considered: zero velocity or zero excess pressure at both boundaries. The variety of nodal and antinodal points is determined. The conclusion is that the nodes of pressure and antinodes of velocity do not longer...
-
Electrical conductivity of nanostructured acceptor-doped ceria fabricated by spark plasma sintering (SPS)
PublicationHigh purity nanoscale powders (~10–15 nm size) of two different compositions of ceria, doped with Gd3+ and Ca2+, have been consolidated by spark plasma sintering (SPS) at different temperatures. Fully-dense samples were observed only at a sintering temperature of 980 °C. The as-sintered samples showed rather fast grain growth with an average grain size below 300 nm. The electrical properties of the samples were evaluated by impedance...
-
Shape Optimisation of Kaplan Turbine Blades Using Genetic Algorithms
PublicationThis monograph is a comprehensive guide to a method of blade profile optimisation for Kaplan-type turbines. This method is based on modelling the interaction between rotor and stator blades. Additionally, the shape of the draft tube is investigated. The influence of the periodic boundary condition vs. full geometry is also discussed. Evolutionary algorithms (EA) are used as an optimisation method together with artificial neural...
-
Symmetry-Breaking Bifurcation for Free Elastic Shell of Biological Cluster, Part 2
PublicationWe will be concerned with a two-dimensional mathematical model for a free elastic shell of biological cluster. The cluster boundary is connected with its kernel by elastic links. The inside part is filled with compressed gas or fluid. Equilibrium forms of the shell of biological cluster may be found as solutions of a certain nonlinear functional-differential equation with several physical parameters. For each multiparameter this...
-
Computations of the least number of periodic points of smooth boundary-preserving self-maps of simply-connected manifolds
PublicationLet $r$ be an odd natural number, $M$ a compact simply-connected smooth manifold, $\dim M\geq 4$, such that its boundary $\partial M$ is also simply-connected. We consider $f$, a $C^1$ self-maps of $M$, preserving $\partial M$. In [G. Graff and J. Jezierski, Geom. Dedicata 187 (2017), 241-258] the smooth Nielsen type periodic number $D_r(f;M,\partial M)$ was defined and proved to be equal to the minimal number of $r$-periodic points...
-
Structure of the interlayer between Au thin film and Si-substrate: Molecular Dynamics simulations
PublicationInteraction between 2, 3, 5 and 7 atomic layers of gold and a (111) silicon surface was investigated with the molecular dynamics simulation method. The simulation of the diffusion interaction between gold and silicon in the temperature range 425-925 K has been carried out. The peculiarities of the concentration changes of the interacting components and the atomic density at the boundary...
-
NUMERICAL MODELLING AND EXPERIMENTATION OF HISTORICAL CARPENTRY CORNER LOG JOINTS
PublicationThe main purpose of this research is to determine the stress distributions on the contact surfaces between the logs of the historical carpentry corner joints. The additional purpose is to compare the stress distribution for four different boundary conditions in the case of dry and wet pine wood. The paper presents the results of numerical analysis of the shortcorner dovetail connection and the saddle notch corner joint, which are...
-
Stress analysis of a strip under tension with a circular hole
PublicationThe paper addresses stress analysis of a strip with a circular hole under uniform uniaxial tension based oncircumferential stress expressionρπ. Stresses are analyzed in the infinite-length strips under tension with holes, the ratioof the hole radiusa to the strip half-widthb is either equal to:κ =a/b = 0.1 orκ = 0.5. Circumferential stresses aredetermined in selected cross-sections of the strip. The stress diagrams display local...
-
Database of the minimal sets of Lefschetz periods for Morse-Smale diffeomorphisms of a connected sum of g tori
Open Research DataMorse–Smale diffeomorphisms, structurally stable and having relatively simple dynamics, constitute an important subclass of diffeomorphisms that have been carefully studied during past decades. For a given Morse–Smale diffeomorphism one can consider “Minimal set of Lefschetz periods”, which provides the information about the set of periodic points of...
-
AN ATTEMPT AT IDENTIFYING THE INFLUENCE OF TEST HEAD ASSEMBLY STIFFNESS ON THE RESULTS OF A TRIBOLOGICAL EXPERIMENT CONDUCTED UNDER MICRO-OSCILLATION CONDITIONS
PublicationThe outcome of experimental research on a group of dry bearing materials carried out under small oscillation conditi ons and using a test rig designed and made at Gdansk University of Technology inspired the decision to find out if the stiffness of test head elements in fluenced the generated results. Therefore, a computer model utilising finite elements was devised and used to simulate the workings of the test head. The mode l...
-
On the Buckling Response of Axially Pressurized Nanotubes Based on a Novel Nonlocal Beam Theory
PublicationIn the present study, the buckling analysis of single-walled carbon nanotubes (SWCNT) on the basis of a new refined beam theory is analyzed. The SWCNT is modeled as an elastic beam subjected to unidirectional compressive loads. To achieve this aim, the new proposed beam theory has only one unknown variable which leads to one equation similar to Euler beam theory and is also free from any shear correction factors. The equilibrium...
-
A Comparison of Simplified Two-dimensional Flow Models Exemplified by Water Flow in a Cavern
PublicationThe paper shows the results of a comparison of simplified models describing a two-dimensional water flow in the example of a water flow through a straight channel sector with a cavern. The following models were tested: the two-dimensional potential flow model, the Stokes model and the Navier-Stokes model. In order to solve the first two, the boundary element method was employed, whereas to solve the Navier-Stokes equations, the...
-
Modelling Signalised Intersections Reliability of Functioning
PublicationThe article addresses a fundamental aspect of traffic, i.e. the operation of traffic signals at intersections, in reference to the reliability theory. In many cases, when intersections carry substantial amounts of traffic, selecting control parameters to produce satisfactory traffic conditions is quite difficult. Design methods do not cover all possible situations which are the result of intersection geometry and location...
-
Flexomagnetic response of buckled piezomagnetic composite nanoplates
PublicationIn this paper, the equation governing the buckling of a magnetic composite plate under the influence of an in-plane one-dimensional magnetic field, assuming the concept of flexomagnetic and considering the resulting flexural force and moment, is investigated for the first time by different analytical boundary conditions. To determine the equation governing the stability of the plate, the nonlocal strain gradient theory has been...
-
An optimal form of the finite element mass matrix in the analysis of longitudinal vibrations of rods
PublicationIn this paper, an attempt is made to find the optimal form of the mass matrix of a rod finite element, which allows one to obtain the smallest errors in the longitudinal frequency determination of natural vibrations of any boundary conditions within the whole range of determined frequencies. It is assumed that the mass matrix can be treated as a linear combination of the consistent and diagonal matrices. Based on analytical considerations,...
-
Mechanism of Solute and Thermal Characteristics in a Casson Hybrid Nanofluid Based with Ethylene Glycol Influenced by Soret and Dufour Effects
PublicationThis article models a system of partial differential equations (PDEs) for the thermal and solute characteristics under gradients (concentration and temperature) in the magnetohydrodynamic flow of Casson liquid in a Darcy porous medium. The modelled problems are highly non-linear with convective boundary conditions. These problems are solved numerically with a finite element approach under a tolerance of 10−8. A numerical algorithm...
-
Ultrashort Opposite Directed Pulses Dynamics with Kerr Effect and Polarization Account
PublicationWe present the application of projection operator methods to solving the problem of the propagation and interaction of short optical pulses of different polarizations and directions in a nonlinear dispersive medium. We restrict ourselves by the caseof one-dimensional theory, taking into account material dispersion and Kerr nonlinearity. The construction of operators is delivered in two variants: for the Cauchy problem and for the...
-
The hydrodynamic pressure field of the ship Zodiak, measurements and calculations
PublicationThe article presents the results of measurements of the slowly changing hydrodynamic pressure field HPF generated by the movement of the ship, Zodiak, in the Bay of Gdansk. The measurement results have been obtained in the framework of the program of the work in Siramis, under the auspices of the European Defence Administration of the EU, by the research team of the Naval Academy in Gdynia. The measurement results were compared with...
-
Reduced-cost constrained miniaturization of wideband antennas using improved trust-region gradient search with repair step
PublicationIn the letter, an improved algorithm for electromagnetic (EM)-driven size reduction of wideband antennas is proposed. Our methodology utilizes variable-fidelity EM simulation models, auxiliary polynomial regression surrogates, as well as multi-point response correction. The constraint handling is implicit, using penalty functions. The core optimization algorithm is a trust-region gradient search with a repair step added in order...
-
Differential Quadrature Method for Dynamic Buckling of Graphene Sheet Coupled by a Viscoelastic Medium Using Neperian Frequency Based on Nonlocal Elasticity Theory
PublicationIn the present study, the dynamic buckling of the graphene sheet coupled by a viscoelastic matrix was studied. In light of the simplicity of Eringen's non-local continuum theory to considering the nanoscale influences, this theory was employed. Equations of motion and boundary conditions were obtained using Mindlin plate theory by taking nonlinear strains of von Kármán and Hamilton's principle into account. On the other hand, a...
-
Fluid–solid interaction on a thin platelet with high-velocity flow: vibration modelling and experiment
PublicationThe paper concerns the nonlinear behaviour of a thin platelet that is streamlined in an aerodynamic tunnel. The air velocity in the aerodynamic tunnel was at 858.9 km/h or 0.7 Ma (Ma—Mach number is a dimensionless quantity in fluid dynamics representing the ratio of flow velocity past a boundary to the local speed of sound). This experiment was numerically simulated using FSI (fluid–solid interaction) tools, namely the coupling...
-
Soft – Partial Frequency Reuse Method for LTE-A
PublicationIn the paper a novel SPFR frequency reuse method is proposed which can be used for improvement of physical resources utilization efficiency in LTE-A. The proposed method combines both SFR and PFR giving the possibility of more flexible use of frequency band in different regions of a cell. First, a short study on the problem of frequency reuse in cells is discussed including bibliography overview....
-
VARIANT DESIGNING IN the PRELIMINARY SMALL SHIP DESIGN PROCESS
PublicationShip designing is a complex process, as the ship itself is a complex, technical multi-level object which operates in the air/water boundary environment and is exposed to the action of many different external and internal factors resulting from the adopted technical solutions, type of operation, and environmental conditions. A traditional ship design process consists of a series of subsequent multistage iterations, which gradually...