Search results for: graph neural network collaborative filtering
-
Trust Management Method for Wireless Sensor Networks
PublicationA Wireless Sensor Network (WSN) is a network of spatially distributed autonomous sensors to monitor physical or environmental conditions, such as temperature, sound, pressure, etc. and to cooperatively pass their data to the main location. The first wireless network that bore any real resemblance to a modern WSN is the Sound Surveillance System (SOSUS), developed by the United States Military in the 1950s to detect and track Soviet...
-
Video of LEGO bricks on conveyor belt - slopes, arcs and rainbows
Open Research DataThe set contains videos of LEGO bricks (slopes, arcs and rainbows) moving on a white conveyor belt. The videos were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary camera located over...
-
Video of LEGO bricks on conveyor belt - narrow plates
Open Research DataThe set contains videos of LEGO bricks (narrow plates) moving on a white conveyor belt. The videos were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary camera located over the final conveyor...
-
Video of LEGO bricks on conveyor belt - narrow special plates
Open Research DataThe set contains videos of LEGO bricks (narrow special plates) moving on a white conveyor belt. The videos were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary camera located over the...
-
Video of LEGO bricks on conveyor belt - Technic pins
Open Research DataThe set contains videos of LEGO bricks (Technic pins) moving on a white conveyor belt. The images were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary camera located over the final conveyor...
-
Position Estimation in Mixed Indoor-Outdoor Environment Using Signals of Opportunity and Deep Learning Approach
PublicationTo improve the user's localization estimation in indoor and outdoor environment a novel radiolocalization system using deep learning dedicated to work both in indoor and outdoor environment is proposed. It is based on the radio signatures using radio signals of opportunity from LTE an WiFi networks. The measurements of channel state estimators from LTE network and from WiFi network are taken by using the developed application....
-
KOALA Graph Theory Internet Service
PublicationKOALA has been created with the idea of C++ library templates, implementing a broad set of procedures in the fields of algorithmic graph theory and network problems in discreate optimization. During the C2NIWA project, a library has been greatly ectended, the code refactored and enclosed with the internet service available in the public repository of thr project. Today it contains interconnected educational materials in the form...
-
System for monitoring road slippery based on CCTV cameras and convolutional neural networks
PublicationThe slipperiness of the surface is essential for road safety. The growing number of CCTV cameras opens the possibility of using them to automatically detect the slippery surface and inform road users about it. This paper presents a system of developed intelligent road signs, including a detector based on convolutional neural networks (CNNs) and the transferlearning method employed to the processing of images acquired with video...
-
Application of ANN and PCA to two-phase flow evaluation using radioisotopes
PublicationIn the two-phase flow measurements a method involving the absorption of gamma radiation can be applied among others. Analysis of the signals from the scintillation probes can be used to determine the number of flow parameters and to recognize flow structure. Three types of flow regimes as plug, bubble, and transitional plug – bubble flows were considered in this work. The article shows how features of the signals in the time and...
-
DEPTH IMAGES FILTERING IN DISTRIBUTED STREAMING
PublicationIn this paper we discuss the comparison of point cloud filters focusing on their applicability for streaming optimization. For the filtering stage within a stream pipeline processing we evaluate three filters: Voxel Grid, Pass Through and Statistical Outlier Removal. For the filters we perform series of the tests aiming at evaluation of changes of point cloud size and transmitting frequency (various fps ratio). We propose a distributed...
-
A method of self-testing of analog circuits based on fully differential op-amps with theTCBF classifier
PublicationA new approach of self-testing of analog circuits based on fully differential op-amps of mixed-signal systems controlled by microcontrollers is presented. It consists of a measurement procedure and a fault diagnosis procedure. We measure voltage samples of a time response of a tested circuit on a stimulation of a unit step function given at the common-mode reference voltage input of the op-amp. The fault detection and fault localization...
-
Technical Engine for Democratization of Modeling, Simulations, and Predictions
PublicationComputational science and engineering play a critical role in advancing both research and daily-life challenges across almost every discipline. As a society, we apply search engines, social media, and se- lected aspects of engineering to improve personal and professional growth. Recently, leveraging such aspects as behavioral model analysis, simulation, big data extraction, and human computation is gain- ing momentum. The nexus...
-
Automatic singing quality recognition employing artificial neural networks
PublicationCelem artykułu jest udowodnienie możliwości automatycznej oceny jakości technicznej głosów śpiewaczych. Pokrótce zaprezentowano w nim stworzoną bazę danych głosów śpiewaczych oraz zaimplementowane parametry. Przy pomocy sztucznych sieci neuronowych zaprojektowano system decyzyjny, który oceniono w pięciostopniowej skali jakość techniczną głosu. Przy pomocy metod statystycznych udowodniono, że wyniki generowane przez ten system...
-
Music Information Retrieval – Soft Computing versus Statistics . Wyszukiwanie informacji muzycznej - algorytmy uczące versus metody statystyczne
PublicationMusic Information Retrieval (MIR) is an interdisciplinary research area that covers automated extraction of information from audio signals, music databases and services enabling the indexed information searching. In the early stages the primary focus of MIR was on music information through Query-by-Humming (QBH) applications, i.e. on identifying a piece of music by singing (singing/whistling), while more advanced implementations...
-
Determination of chlorine concentration using single temperature modulated semiconductor gas sensor
PublicationA periodic temperature modulation using sinusoidal heater voltage was applied to a commercial SnO2 semiconductor gas sensor. Resulting resistance response of the sensor was analyzed using a feature extraction method based on Fast Fourier Transformation (FFT). The amplitudes of the higher harmonics of the FFT from the dynamic nonlinear responses of measured gas were further utilized as an input for Artificial Neural...
-
Simulating Power Generation from Photovoltaics in the Polish Power System Based on Ground Meteorological Measurements—First Tests Based on Transmission System Operator Data
PublicationThe Polish power system is undergoing a slow process of transformation from coal to one that is renewables dominated. Although coal will remain a fundamental fuel in the coming years, the recent upsurge in installed capacity of photovoltaic (PV) systems should draw significant attention. Owning to the fact that the Polish Transmission System Operator recently published the PV hourly generation time series in this article, we aim...
-
Predicting the impact of traffic–induced vibrations on buildings using artificial neural networks
PublicationTraffic–induced vibrations may constitute a considerable load to a building, cause cracking of plaster, cracks in load–bearing elements or even a global structural collapse of the whole structure [1-4]. Vibrations measurements of real structures are costly and laborious, not justified in all cases. The aim of the paper is to create an original algorithm, to predict the negative dynamic impact on the examined residential building...
-
Video of LEGO bricks on conveyor belt - Tiles with studs
Open Research DataThe set contains videos of LEGO bricks (tiles with studs) moving on a white conveyor belt. The videos were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary camera located over the final...
-
Video of LEGO bricks on conveyor belt - Tiles and panels
Open Research DataThe set contains videos of LEGO bricks (tiles, panels, etc.) moving on a white conveyor belt. The videos were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary camera located over the final...
-
Video of LEGO bricks on conveyor belt - Bricks with studs on the side
Open Research DataThe set contains videos of LEGO bricks (bricks with studs on the side) moving on a white conveyor belt. The videos were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary camera located over...
-
Video of LEGO bricks on conveyor belt - Plates with studs on the side
Open Research DataThe set contains videos of LEGO bricks (plates with studs on the side) moving on a white conveyor belt. The videos were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary camera located over...
-
Video of LEGO bricks on conveyor belt - gears
Open Research DataThe set contains videos of LEGO bricks (gears) moving on a white conveyor belt. The videos were taken for gathering images for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary camera located over the...
-
Video of LEGO bricks on conveyor belt - Technic Brics
Open Research DataThe set contains videos of LEGO bricks (Technic bricks) moving on a white conveyor belt. The videos were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary camera located over the final conveyor...
-
Video of LEGO bricks on conveyor belt - Technic axles
Open Research DataThe set contains videos of LEGO bricks (Technic axles) moving on a white conveyor belt. The videos were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary camera located over the final conveyor...
-
Thermal Images Analysis Methods using Deep Learning Techniques for the Needs of Remote Medical Diagnostics
PublicationRemote medical diagnostic solutions have recently gained more importance due to global demographic shifts and play a key role in evaluation of health status during epidemic. Contactless estimation of vital signs with image processing techniques is especially important since it allows for obtaining health status without the use of additional sensors. Thermography enables us to reveal additional details, imperceptible in images acquired...
-
Deep learning-enabled integration of renewable energy sources through photovoltaics in buildings
PublicationInstalling photovoltaic (PV) systems in buildings is one of the most effective strategies for achieving sustainable energy goals and reducing carbon emissions. However, the requirement for efficient energy management, the fluctuating energy demands, and the intermittent nature of solar power are a few of the obstacles to the seamless integration of PV systems into buildings. These complexities surpass the capabilities of rule-based...
-
Application of autoencoder to traffic noise analysis
PublicationThe aim of an autoencoder neural network is to transform the input data into a lower-dimensional code and then to reconstruct the output from this code representation. Applications of autoencoders to classifying sound events in the road traffic have not been found in the literature. The presented research aims to determine whether such an unsupervised learning method may be used for deploying classification algorithms applied to...
-
Machine Learning Techniques in Concrete Mix Design
PublicationConcrete mix design is a complex and multistage process in which we try to find the best composition of ingredients to create good performing concrete. In contemporary literature, as well as in state-of-the-art corporate practice, there are some methods of concrete mix design, from which the most popular are methods derived from The Three Equation Method. One of the most important features of concrete is compressive strength, which...
-
Pose-Invariant Face Detection by Replacing Deep Neurons with Capsules for Thermal Imagery in Telemedicine
PublicationAbstract— The aim of this work was to examine the potential of thermal imaging as a cost-effective tool for convenient, non- intrusive remote monitoring of elderly people in different possible head orientations, without imposing specific behavior on users, e.g. looking toward the camera. Illumination and pose invariant head tracking is important for many medical applications as it can provide information, e.g. about vital signs, sensory...
-
Identyfikacja instrumentu muzycznego z nagrania fonicznego za pomocą sztucznych sieci neuronowych
PublicationCelem rozprawy jest zbadanie algorytmów do identyfikacji instrumentów występujących w sygnale polifonicznym z wykorzystaniem sztucznych sieci neuronowych. W części teoretycznej przywołano podstawy przetwarzania sygnałów fonicznych w kontekście ekstrakcji parametrów sygnałów wykorzystywanych w treningu sieci neuronowych. Dodatkowo dokonano analizy rozwoju metod uczenia maszynowego z uwzględnieniem podziału na sieci neuronowe pierwszej,...
-
Gesture Recognition With the Linear Optical Sensor and Recurrent Neural Networks
PublicationIn this paper, the optical linear sensor, a representative of low-resolution sensors, was investigated in the multiclass recognition of near-field hand gestures. The recurrent neural network (RNN) with a gated recurrent unit (GRU) memory cell was utilized as a gestures classifier. A set of 27 gestures was collected from a group of volunteers. The 27 000 sequences obtained were divided into training, validation, and test subsets....
-
THE ROLE OF INFERENCE IN MOBILE MEDICAL APPLICATION DESIGN
PublicationIn the early 21st century, artificial intelligence began to be used to process medical information. However, before this happened, predictive models used in healthcare could only consider a limited number of variables, and only in properly structured and organised medical data. Today, advanced tools based on machine learning techniques - which, using artificial neural networks, can explore extremely complex relationships - and...
-
User Orientation Detection in Relation to Antenna Geometry in Ultra-Wideband Wireless Body Area Networks Using Deep Learning
PublicationIn this paper, the issue of detecting a user’s position in relation to the antenna geometry in ultra-wideband (UWB) off-body wireless body area network (WBAN) communication using deep learning methods is presented. To measure the impulse response of the channel, a measurement stand consisting of EVB1000 devices and DW1000 radio modules was developed and indoor static measurement scenarios were performed. It was proven that for...
-
Project-Based Collaborative Research and Training Roadmap for Manufacturing Based on Industry 4.0
PublicationThe importance of the economy being up to date with the latest developments, such as Industry 4.0, is more evident than ever before. Successful implementation of Industry 4.0 principles requires close cooperation of industry and state authorities with universities. A paradigm of such cooperation is described in this paper stemming from university partners with partly overlapping and partly complementary areas of expertise in manufacturing....
-
Energy-Efficient Self-Supervised Technique to Identify Abnormal User Over 5G Network for E-Commerce
PublicationWithin the realm of e-commerce networks, it is frequently observed that certain users exhibit behavior patterns that differ substantially from the normative behaviors exhibited by the majority of users. The identification of these atypical individuals and the understanding of their behavioral patterns are of significant practical significance in maintaining order on e-commerce platforms. One such method for accomplishing this...
-
Energy-Efficient Self-Supervised Technique to Identify Abnormal User Over 5G Network for E-Commerce
PublicationWithin the realm of e-commerce networks, it is frequently observed that certain users exhibit behavior patterns that differ substantially from the normative behaviors exhibited by the majority of users. The identification of these atypical individuals and the understanding of their behavioral patterns are of significant practical significance in maintaining order on e-commerce platforms. One such method for accomplishing this objective...
-
CNN Architectures for Human Pose Estimation from a Very Low Resolution Depth Image
PublicationThe paper is dedicated to proposing and evaluating a number of convolutional neural network architectures for calculating a multiple regression on 3D coordinates of human body joints tracked in a single low resolution depth image. The main challenge was to obtain a high precision in case of a noisy and coarse scan of the body, as observed by a depth sensor from a large distance. The regression network was expected to reason about...
-
Video of LEGO bricks on conveyor belt - Special Brics
Open Research DataThe set contains videos of LEGO bricks (special bricks, with additional connectors etc.) moving on a white conveyor belt. The videos were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary...
-
Video of LEGO bricks on conveyor belt - Wide Brics
Open Research DataThe set contains videos of LEGO bricks (wide bricks, with each side having more than 1 stud) moving on a white conveyor belt. The videos were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary...
-
Video of LEGO bricks on conveyor belt - minifigures, animals, plants and accessories
Open Research DataThe set contains videos of LEGO bricks (minifigures, animals, plants and accessories) moving on a white conveyor belt. The images were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary camera...
-
Video of LEGO bricks on conveyor belt - Narrow Brics
Open Research DataThe set contains videos of LEGO bricks (narrow bricks, with on side no wider than 1 stud) moving on a white conveyor belt. The videos were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary...
-
A new multi-process collaborative architecture for time series classification
PublicationTime series classification (TSC) is the problem of categorizing time series data by using machine learning techniques. Its applications vary from cybersecurity and health care to remote sensing and human activity recognition. In this paper, we propose a novel multi-process collaborative architecture for TSC. The propositioned method amalgamates multi-head convolutional neural networks and capsule mechanism. In addition to the discovery...
-
Comparison of image pre-processing methods in liver segmentation task
PublicationAutomatic liver segmentation of Computed Tomography (CT) images is becoming increasingly important. Although there are many publications in this field there is little explanation why certain pre-processing methods were utilised. This paper presents a comparison of the commonly used approach of Hounsfield Units (HU) windowing, histogram equalisation, and a combination of these methods to try to ascertain what are the differences...
-
Comparison and Analysis of Service Selection Algorithms
PublicationIn Service Oriented Architecture, applications are developed by integration of existing services in order to reduce development cost and time. The approach, however, requires algorithms that select appropriate services out of available, alternative ones. The selection process may consider both optimalization requirements, such as maximalization of performance, and constraint requirements, such minimal security or maximum development...
-
Adaptacyjny algorytm filtracji sygnału fonokardiograficznego wykorzystujący sztuczną sieć neuronową
PublicationPodstawowym problemem podczas projektowania systemu autodiagnostyki chorób serca, bazującego na analizie sygnału fonokardiograficznego (PCG), jest konieczność zapewnienia, niezależnie od warunków zewnętrznych, sygnału o wysokiej jakości. W artykule, bazując na zdolności Sztucznej Sieci Neuronowej (SSN) do predykcji sygnałów periodycznych oraz quasi-periodycznych, został opracowany adaptacyjny algorytm filtracji dźwięków serca....
-
Validation of Interpolation Algorithms for Multiscale UV-VIS Imaging Using UAV Spectrometer
PublicationIn this study, we present a comparison of popular methods for the interpolation of irregular spatial data in order to determine the applicability of each algorithm for hyperspectral reflectance estimation. The algorithms were benchmarked against a very high-resolution orthoimage from an RGB camera and medium-resolution satellite imagery from Sentinel-2A. We tested five interpolation algorithms: Triangulated Irregular Network (TIN),...
-
Multi-objective optimization of the ORC axial turbine for a waste heat recovery system working in two modes: cogeneration and condensation
PublicationDue to the demand of the district heating network and electric power grid ORC turbines can operate in the condensation and cogeneration modes. This approach requires the design of an expander which is characterized by high efficiency in each mode of operation. The paper is devoted to a multi-objective efficiency optimization of a one stage axial ORC turbine working on MM (Hexamethyldisiloxane). An Implicit Filtering algorithm (IF)...
-
Optimal edge-coloring with edge rate constraints
PublicationWe consider the problem of covering the edges of a graph by a sequence of matchings subject to the constraint that each edge e appears in at least a given fraction r(e) of the matchings. Although it can be determined in polynomial time whether such a sequence of matchings exists or not [Grötschel et al., Combinatorica (1981), 169–197], we show that several questions about the length of the sequence are computationally intractable....
-
Deep-Learning-Based Precise Characterization of Microwave Transistors Using Fully-Automated Regression Surrogates
PublicationAccurate models of scattering and noise parameters of transistors are instrumental in facilitating design procedures of microwave devices such as low-noise amplifiers. Yet, data-driven modeling of transistors is a challenging endeavor due to complex relationships between transistor characteristics and its designable parameters, biasing conditions, and frequency. Artificial neural network (ANN)-based methods, including deep learning...
-
Clothes Detection and Classification Using Convolutional Neural Networks
PublicationIn this paper we describe development of a computer vision system for accurate detection and classification of clothes for e-commerce images. We present a set of experiments on well established architectures of convolutional neural networks, including Residual networks, SqueezeNet and Single Shot MultiBox Detector (SSD). The clothes detection network was trained and tested on DeepFashion dataset, which contains box annotations...