Search results for: G-QUADRUPLEX - Bridge of Knowledge

Search

Search results for: G-QUADRUPLEX

Filters

total: 1683
filtered: 1281

clear all filters


Chosen catalog filters

  • Category

  • Year

  • Options

clear Chosen catalog filters disabled

Search results for: G-QUADRUPLEX

  • Total domination in versus paired-domination in regular graphs

    A subset S of vertices of a graph G is a dominating set of G if every vertex not in S has a neighbor in S, while S is a total dominating set of G if every vertex has a neighbor in S. If S is a dominating set with the additional property that the subgraph induced by S contains a perfect matching, then S is a paired-dominating set. The domination number, denoted γ(G), is the minimum cardinality of a dominating set of G, while the...

    Full text available to download

  • Independent Domination Subdivision in Graphs

    Publication

    - GRAPHS AND COMBINATORICS - Year 2021

    A set $S$ of vertices in a graph $G$ is a dominating set if every vertex not in $S$ is adjacent to a vertex in~$S$. If, in addition, $S$ is an independent set, then $S$ is an independent dominating set. The independent domination number $i(G)$ of $G$ is the minimum cardinality of an independent dominating set in $G$. The independent domination subdivision number $\sdi(G)$ is the minimum number of edges that must be subdivided (each...

    Full text available to download

  • Double bondage in graphs

    Publication

    A vertex of a graph is said to dominate itself and all of its neighbors. A double dominating set of a graph G=(V,E) is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D. The double domination number of a graph G, denoted by gamma_d(G), is the minimum cardinality of a double dominating set of G. The double bondage number of G, denoted by b_d(G), is the minimum cardinality among all sets...

    Full text to download in external service

  • Non-isolating 2-bondage in graphs

    A 2-dominating set of a graph G=(V,E) is a set D of vertices of G such that every vertex of V(G)D has at least two neighbors in D. The 2-domination number of a graph G, denoted by gamma_2(G), is the minimum cardinality of a 2-dominating set of G. The non-isolating 2-bondage number of G, denoted by b_2'(G), is the minimum cardinality among all sets of edges E' subseteq E such that delta(G-E') >= 1 and gamma_2(G-E') > gamma_2(G)....

    Full text available to download

  • Non-isolating bondage in graphs

    A dominating set of a graph $G = (V,E)$ is a set $D$ of vertices of $G$ such that every vertex of $V(G) \setminus D$ has a neighbor in $D$. The domination number of a graph $G$, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of $G$. The non-isolating bondage number of $G$, denoted by $b'(G)$, is the minimum cardinality among all sets of edges $E' \subseteq E$ such that $\delta(G-E') \ge 1$ and $\gamma(G-E')...

    Full text available to download

  • 2-bondage in graphs

    A 2-dominating set of a graph G=(V,E) is a set D of vertices of G such that every vertex of V(G)D has at least two neighbors in D. The 2-domination number of a graph G, denoted by gamma_2(G), is the minimum cardinality of a 2-dominating set of G. The 2-bondage number of G, denoted by b_2(G), is the minimum cardinality among all sets of edges E' subseteq E such that gamma_2(G-E') > gamma_2(G). If for every E' subseteq E we have...

    Full text to download in external service

  • On trees with double domination number equal to 2-outer-independent domination number plus one

    A vertex of a graph is said to dominate itself and all of its neighbors. A double dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D. The double domination number of a graph G is the minimum cardinality of a double dominating set of G. For a graph G=(V,E), a subset D subseteq V(G) is a 2-dominating set if every vertex of V(G)D has at least two neighbors...

    Full text to download in external service

  • Edge coloring of graphs of signed class 1 and 2

    Publication

    - DISCRETE APPLIED MATHEMATICS - Year 2023

    Recently, Behr (2020) introduced a notion of the chromatic index of signed graphs and proved that for every signed graph (G, σ) it holds that ∆(G) ≤ χ′(G,σ) ≤ ∆(G) + 1, where ∆(G) is the maximum degree of G and χ′ denotes its chromatic index. In general, the chromatic index of (G, σ) depends on both the underlying graph G and the signature σ. In the paper we study graphs G for which χ′(G, σ) does not depend on σ. To this aim we...

    Full text to download in external service

  • All graphs with paired-domination number two less than their order

    Publication

    Let G=(V,E) be a graph with no isolated vertices. A set S⊆V is a paired-dominating set of G if every vertex not in S is adjacent with some vertex in S and the subgraph induced by S contains a perfect matching. The paired-domination number γp(G) of G is defined to be the minimum cardinality of a paired-dominating set of G. Let G be a graph of order n. In [Paired-domination in graphs, Networks 32 (1998), 199-206] Haynes and Slater...

    Full text available to download

  • Unicyclic graphs with equal total and total outer-connected domination numbers

    Publication

    - ARS COMBINATORIA - Year 2015

    Let G = (V,E) be a graph without an isolated vertex. A set D ⊆ V (G) is a total dominating set if D is dominating and the in- duced subgraph G[D] does not contain an isolated vertex. The total domination number of G is the minimum cardinality of a total domi- nating set of G. A set D ⊆ V (G) is a total outer–connected dominating set if D is total dominating and the induced subgraph G[V (G)−D] is a connected graph. The total outer–connected...

    Full text to download in external service

  • Graph classes generated by Mycielskians

    Publication

    - Discussiones Mathematicae Graph Theory - Year 2020

    In this paper we use the classical notion of weak Mycielskian M'(G) of a graph G and the following sequence: M'_{0}(G) =G, M'_{1}(G)=M'(G), and M'_{n}(G)=M'(M'_{n−1}(G)), to show that if G is a complete graph oforder p, then the above sequence is a generator of the class of p-colorable graphs. Similarly, using Mycielskian M(G) we show that analogously defined sequence is a generator of the class consisting of graphs for which the...

    Full text available to download

  • On the ratio between 2-domination and total outer-independent domination numbers of trees

    A 2-dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)D has a at least two neighbors in D. A total outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V(G)D is independent. The 2-domination (total outer-independent domination, respectively) number of a graph G is the minimum cardinality of a 2-dominating (total...

    Full text to download in external service

  • An upper bound on the total outer-independent domination number of a tree

    Publication

    A total outer-independent dominating set of a graph G=(V(G),E(G)) is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V(G)D is independent. The total outer-independent domination number of a graph G, denoted by gamma_t^{oi}(G), is the minimum cardinality of a total outer-independent dominating set of G. We prove that for every tree T of order n >= 4, with l leaves and s support vertices we have...

    Full text available to download

  • Block graphs with large paired domination multisubdivision number

    Publication

    - Discussiones Mathematicae Graph Theory - Year 2021

    The paired domination multisubdivision number of a nonempty graph G, denoted by msdpr(G), is the smallest positive integer k such that there exists an edge which must be subdivided k times to increase the paired domination number of G. It is known that msdpr(G) ≤ 4 for all graphs G. We characterize block graphs with msdpr(G) = 4.

    Full text available to download

  • Similarities and Differences Between the Vertex Cover Number and the Weakly Connected Domination Number of a Graph

    Publication
    • M. Lemańska
    • J. A. RODRíGUEZ-VELáZQUEZ
    • R. Trujillo-Rasua

    - FUNDAMENTA INFORMATICAE - Year 2017

    A vertex cover of a graph G = (V, E) is a set X ⊂ V such that each edge of G is incident to at least one vertex of X. The ve cardinality of a vertex cover of G. A dominating set D ⊆ V is a weakly connected dominating set of G if the subgraph G[D]w = (N[D], Ew) weakly induced by D, is connected, where Ew is the set of all edges having at least one vertex in D. The weakly connected domination number γw(G) of G is the minimum cardinality...

    Full text to download in external service

  • New potential functions for greedy independence and coloring

    Publication

    - DISCRETE APPLIED MATHEMATICS - Year 2015

    A potential function $f_G$ of a finite, simple and undirected graph $G=(V,E)$ is an arbitrary function $f_G : V(G) \rightarrow \mathbb{N}_0$ that assigns a nonnegative integer to every vertex of a graph $G$. In this paper we define the iterative process of computing the step potential function $q_G$ such that $q_G(v)\leq d_G(v)$ for all $v\in V(G)$. We use this function in the development of new Caro-Wei-type and Brooks-type...

    Full text available to download

  • Tworzenie sieci współpracy uczelni z otoczeniem przy wykorzystaniu zamówień przedkomercyjnych na przykładzie projektu e-Pionier

    Publication

    - e-mentor - Year 2017

    Autorzy podjęli temat nowatorskiego podejścia uczelni do zamówień publicznych z wykorzystaniem modelu poczwórnej helisy opartej na zamówieniach przedkomercyjnych (pre-commercial procurement). Celem publikacji jest wskazanie możliwości praktycznego zastosowania takiego podejścia na przykładzie pilotażowego projektu e-Pionier, realizowanego w latach 2017-2020 przez Politechnikę Gdańską we współpracy z innymi uczelniami, instytucjami...

    Full text available to download

  • On trees with double domination number equal to total domination number plus one

    Publication

    A total dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D. A vertex of a graph is said to dominate itself and all of its neighbors. A double dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D. The total (double, respectively) domination number of a graph G is the minimum cardinality of a total (double,...

    Full text available to download

  • On the size of identifying codes in triangle-free graphs

    Publication

    - DISCRETE APPLIED MATHEMATICS - Year 2012

    In an undirected graph G, a subset C⊆V(G) such that C is a dominating set of G, and each vertex in V(G) is dominated by a distinct subset of vertices from C, is called an identifying code of G. The concept of identifying codes was introduced by Karpovsky, Chakrabarty and Levitin in 1998. For a given identifiable graph G, let gammaID(G) be the minimum cardinality of an identifying code in G. In this paper, we show that for any connected...

    Full text available to download

  • Minimum order of graphs with given coloring parameters

    Publication

    - DISCRETE MATHEMATICS - Year 2015

    A complete k-coloring of a graph G=(V,E) is an assignment F: V -> {1,...,k} of colors to the vertices such that no two vertices of the same color are adjacent, and the union of any two color classes contains at least one edge. Three extensively investigated graph invariants related to complete colorings are the minimum and maximum number of colors in a complete coloring (chromatic number χ(G) and achromatic number ψ(G), respectively),...

    Full text available to download

  • Some Progress on Total Bondage in Graphs

    Publication

    - GRAPHS AND COMBINATORICS - Year 2014

    The total bondage number b_t(G) of a graph G with no isolated vertex is the cardinality of a smallest set of edges E'⊆E(G) for which (1) G−E' has no isolated vertex, and (2) γ_t(G−E')>γ_t(G). We improve some results on the total bondage number of a graph and give a constructive characterization of a certain class of trees achieving the upper bound on the total bondage number.

    Full text available to download

  • On trees with equal domination and total outer-independent domination numbers

    Publication

    For a graph G=(V,E), a subset D subseteq V(G) is a dominating set if every vertex of V(G)D has a neighbor in D, while it is a total outer-independent dominating set if every vertex of G has a neighbor in D, and the set V(G)D is independent. The domination (total outer-independent domination, respectively) number of G is the minimum cardinality of a dominating (total outer-independent dominating, respectively) set of G. We characterize...

  • A lower bound on the total outer-independent domination number of a tree

    Publication

    A total outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V(G)D is independent. The total outer-independent domination number of a graph G, denoted by gamma_t^{oi}(G), is the minimum cardinality of a total outer-independent dominating set of G. We prove that for every nontrivial tree T of order n with l leaves we have gamma_t^{oi}(T) >= (2n-2l+2)/3,...

    Full text available to download

  • GreedyMAX-type Algorithms for the Maximum Independent Set Problem

    Publication

    A maximum independent set problem for a simple graph G = (V,E) is to find the largest subset of pairwise nonadjacent vertices. The problem is known to be NP-hard and it is also hard to approximate. Within this article we introduce a non-negative integer valued functionp defined on the vertex set V(G) and called a potential function of agraph G, while P(G) = max{vinV(G)| p(v)} is called a potential of G. For any graph P(G) <= D(G),...

    Full text to download in external service

  • T-colorings, divisibility and circular chromatic number

    Let T be a T-set, i.e., a finite set of nonnegative integers satisfying 0 ∈ T, and G be a graph. In the paper we study relations between the T-edge spans espT (G) and espd⊙T (G), where d is a positive integer and d ⊙ T = {0 ≤ t ≤ d (max T + 1): d |t ⇒ t/d ∈ T} . We show that espd⊙T (G) = d espT (G) − r, where r, 0 ≤ r ≤ d − 1, is an integer that depends on T and G. Next we focus on the case T = {0} and show that espd⊙{0} (G) =...

    Full text available to download

  • An upper bound on the 2-outer-independent domination number of a tree

    Publication

    A 2-outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)D has a at least two neighbors in D, and the set V(G)D is independent. The 2-outer-independent domination number of a graph G, denoted by gamma_2^{oi}(G), is the minimum cardinality of a 2-outer-independent dominating set of G. We prove that for every nontrivial tree T of order n with l leaves we have gamma_2^{oi}(T) <= (n+l)/2,...

    Full text to download in external service

  • On trees with double domination number equal to 2-domination number plus one

    A vertex of a graph is said to dominate itself and all of its neighbors. A subset D subseteq V(G) is a 2-dominating set of G if every vertex of V(G)D is dominated by at least two vertices of D, while it is a double dominating set of G if every vertex of G is dominated by at least two vertices of D. The 2-domination (double domination, respectively) number of a graph G is the minimum cardinality of a 2-dominating (double dominating,...

    Full text to download in external service

  • Parity vertex colouring of graphs

    Publication

    - Discussiones Mathematicae Graph Theory - Year 2011

    A parity path in a vertex colouring of a graph is a path along which each colour is used an even number of times. Let Xp(G) be the least number of colours in a proper vertex colouring of G having no parity path. It is proved that for any graph G we have the following tight bounds X(G) <= Xp(G) <=|V(G)|− a(G)+1, where X(G) and a(G) are the chromatic number and the independence number of G, respectively. The bounds are improved for...

    Full text available to download

  • Equitable coloring of corona products of graphs

    Publication
    • H. Furmańczyk
    • K. Kaliraj
    • M. Kubale
    • J. Vernold Vivin

    - Advances and Applications in Discrete Mathematics - Year 2013

    In this paper we consider an equitable coloring of some corona products of graphs G and H in symbols, G o H). In particular, we show that deciding the colorability of G o H is NP-complete even if G is 4-regular and H is K_2. Next, we prove exact values or upper bounds on the equitable chromatic number of G o H, where G is an equitably 3- or 4-colorable graph and H is an r-partite graph, a path, a cycle or a complete graph.

    Full text available to download

  • Isolation Number versus Domination Number of Trees

    Publication
    • M. Lemańska
    • M. J. Souto-Salorio
    • A. Dapena
    • F. Vazquez-Araujo

    - Mathematics - Year 2021

    If G=(VG,EG) is a graph of order n, we call S⊆VG an isolating set if the graph induced by VG−NG[S] contains no edges. The minimum cardinality of an isolating set of G is called the isolation number of G, and it is denoted by ι(G). It is known that ι(G)≤n3 and the bound is sharp. A subset S⊆VG is called dominating in G if NG[S]=VG. The minimum cardinality of a dominating set of G is the domination number, and it is denoted by γ(G)....

    Full text available to download

  • Graphs with isolation number equal to one third of the order

    Publication

    - DISCRETE MATHEMATICS - Year 2024

    A set D of vertices of a graph G is isolating if the set of vertices not in D and with no neighbor in D is independent. The isolation number of G, denoted by \iota(G) , is the minimum cardinality of an isolating set of G. It is known that \iota(G) \leq n/3 , if G is a connected graph of order n, , distinct from C_5 . The main result of this work is the characterisation of unicyclic and block graphs of order n with isolating number...

    Full text to download in external service

  • The Backbone Coloring Problem for Bipartite Backbones

    Let G be a simple graph, H be its spanning subgraph and λ≥2 be an integer. By a λ -backbone coloring of G with backbone H we mean any function c that assigns positive integers to vertices of G in such a way that |c(u)−c(v)|≥1 for each edge uv∈E(G) and |c(u)−c(v)|≥λ for each edge uv∈E(H) . The λ -backbone chromatic number BBCλ(G,H) is the smallest integer k such that there exists a λ -backbone coloring c of G with backbone H satisfying...

    Full text to download in external service

  • Review of cigars and cigar-type products as potential sources of consumer exposure to heavy metals

    The popularity of cigars, growing since 1993, has not gone hand in hand with the increased interest of researchers in these products. Although the literature widely describes the harmfulness of tobacco and the content of toxic substances in tobacco products, the topic is often treated selectively as relating primarily to cigarettes and rarely extends to other products of the broadly defined tobacco industry. However, there is no...

    Full text available to download

  • An upper bound for the double outer-independent domination number of a tree

    Publication

    A vertex of a graph is said to dominate itself and all of its neighbors. A double outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D, and the set V(G)\D is independent. The double outer-independent domination number of a graph G, denoted by γ_d^{oi}(G), is the minimum cardinality of a double outer-independent dominating set of G. We prove...

    Full text available to download

  • Impact of aeration conditions on the removal of low concentrations of nitrogen in a tertiary partially aerated biological filter

    Publication

    - ECOLOGICAL ENGINEERING - Year 2012

    A submerged biological aerated filter (BAF) partially aerated was used to study the removal of low concentrations of ammonia nitrogen (0.3 g N/m3 to 30.5 g N/m3) typically found in nutrient enriched river and lake waters, and treated effluents. Four series of experiments were performed with a synthetic wastewater at ammonia loading rates between 6 g N/m3 d and 903 g N/m3 d and C/N ratios from 2 to 20. The results showed that ammonia...

    Full text to download in external service

  • BTEX concentration levels in urban air in the area of the Tri-City agglomeration (Gdansk, Gdynia, Sopot), Poland

    The paper presents and discusses the results of atmospheric air quality research conducted in 2012 with reference to the level of BTEX compounds in the Tri-City agglomeration—Gdansk, Gdynia, and Sopot (northern Poland). At the stage of BTEX sampling from the ambient air, Radiello® diffusive passive samplers were applied. The annual time-weighted average concentrations for benzene, toluene, ethylbenzene, and xylenes (BTEX) in the...

    Full text to download in external service

  • Teloxantron inhibits the processivity of telomerase with preferential DNA damage on telomeres

    Publication

    - Cell Death and Disease - Year 2022

    Telomerase reactivation is one of the hallmarks of cancer, which plays an important role in cellular immortalization and the development and progression of the tumor. Chemical telomerase inhibitors have been shown to trigger replicative senescence and apoptotic cell death both in vitro and in vivo. Due to its upregulation in various cancers, telomerase is considered a potential target in cancer therapy. In this study, we identified...

    Full text available to download

  • On trees with equal 2-domination and 2-outer-independent domination numbers

    For a graph G = (V,E), a subset D \subseteq V(G) is a 2-dominating set if every vertex of V(G)\D$ has at least two neighbors in D, while it is a 2-outer-independent dominating set if additionally the set V(G)\D is independent. The 2-domination (2-outer-independent domination, respectively) number of G, is the minimum cardinality of a 2-dominating (2-outer-independent dominating, respectively) set of G. We characterize all trees...

    Full text available to download

  • A Noether theorem for stochastic operators on Schatten classes

    Publication

    We prove that a stochastic (Markov) operator S acting on a Schatten class C_1 satisfies the Noether condition S'(A) = A and S'(A^2) = A^2, where A is a Hermitian bounded linear operator on a complex Hilbert space H, if and only if, S(E(G)XE(G)) = E(G)S(X)E(G) holds true for every Borel subset G of the real line R, where E(G) denotes the orthogonal projection coming from the spectral resolution of A. Similar results are obtained...

    Full text available to download

  • Progress on Roman and Weakly Connected Roman Graphs

    Publication

    - Mathematics - Year 2021

    A graph G for which γR(G)=2γ(G) is the Roman graph, and if γwcR(G)=2γwc(G), then G is the weakly connected Roman graph. In this paper, we show that the decision problem of whether a bipartite graph is Roman is a co-NP-hard problem. Next, we prove similar results for weakly connected Roman graphs. We also study Roman trees improving the result of M.A. Henning’s A characterization of Roman trees, Discuss. Math. Graph Theory 22 (2002)....

    Full text available to download

  • Interval incidence coloring of subcubic graphs

    In this paper we study the problem of interval incidence coloring of subcubic graphs. In [14] the authors proved that the interval incidence 4-coloring problem is polynomially solvable and the interval incidence 5-coloring problem is N P-complete, and they asked if χii(G) ≤ 2∆(G) holds for an arbitrary graph G. In this paper, we prove that an interval incidence 6-coloring always exists for any subcubic graph G with ∆(G) = 3.

    Full text available to download

  • Generalized Gradient Equivariant Multivalued Maps, Approximation and Degree

    Publication

    Consider the Euclidean space Rn with the orthogonal action of a compact Lie group G. We prove that a locally Lipschitz G-invariant mapping f from Rn to R can be uniformly approximated by G-invariant smooth mappings g in such a way that the gradient of g is a graph approximation of Clarke’s generalized gradient of f . This result enables a proper development of equivariant gradient degree theory for a class of set-valued gradient...

    Full text available to download

  • Coronas and Domination Subdivision Number of a Graph

    Publication

    In this paper, for a graph G and a family of partitions P of vertex neighborhoods of G, we define the general corona G ◦P of G. Among several properties of this new operation, we focus on application general coronas to a new kind of characterization of trees with the domination subdivision number equal to 3.

    Full text available to download

  • On trees attaining an upper bound on the total domination number

    A total dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D. The total domination number of a graph G, denoted by γ_t(G), is the minimum cardinality of a total dominating set of G. Chellali and Haynes [Total and paired-domination numbers of a tree, AKCE International Journal of Graphs and Combinatorics 1 (2004), 69-75] established the following upper bound on the total domination...

    Full text to download in external service

  • Some variants of perfect graphs related to the matching number, the vertex cover and the weakly connected domination number

    Publication

    Given two types of graph theoretical parameters ρ and σ, we say that a graph G is (σ, ρ)- perfect if σ(H) = ρ(H) for every non-trivial connected induced subgraph H of G. In this work we characterize (γw, τ )-perfect graphs, (γw, α′)-perfect graphs, and (α′, τ )-perfect graphs, where γw(G), τ (G) and α′(G) denote the weakly connected domination number, the vertex cover number and the matching number of G, respectively. Moreover,...

    Full text to download in external service

  • Interpolation properties of domination parameters of a graph

    An integer-valued graph function π is an interpolating function if a set π(T(G))={π(T): T∈TT(G)} consists of consecutive integers, where TT(G) is the set of all spanning trees of a connected graph G. We consider the interpolation properties of domination related parameters.

    Full text available to download

  • The Current State-of-the-Art in the Determination of Pharmaceutical Residues in Environmental Matrices Using Hyphenated Techniques

    Several thousand tons of pharmaceuticals and their transformation products (metabolites and degradation products) are introduced into the environment each year. They affect both human health and the environment, therefore, analytical procedures enabling the determination of a wide range of pharmaceuticals at trace levelswithminimal effort, time, and energy are required. Nowadays, hyphenated techniques are commonly applied in pharmaceutical...

    Full text to download in external service

  • Restrained differential of a graph

    Publication

    - Discussiones Mathematicae Graph Theory - Year 2023

    Given a graph $G=(V(G), E(G))$ and a vertex $v\in V(G)$, the {open neighbourhood} of $v$ is defined to be $N(v)=\{u\in V(G) :\, uv\in E(G)\}$. The {external neighbourhood} of a set $S\subseteq V(G)$ is defined as $S_e=\left(\cup_{v\in S}N(v)\right)\setminus S$, while the \emph{restrained external neighbourhood} of $S$ is defined as $S_r=\{v\in S_e : N(v)\cap S_e\neq \varnothing\}$. The restrained differential of a graph $G$ is...

    Full text available to download

  • The convex domination subdivision number of a graph

    Publication

    Let G = (V;E) be a simple graph. A set D\subset V is a dominating set of G if every vertex in V - D has at least one neighbor in D. The distance d_G(u, v) between two vertices u and v is the length of a shortest (u, v)-path in G. An (u, v)-path of length d_G(u; v) is called an (u, v)-geodesic. A set X\subset V is convex in G if vertices from all (a, b)-geodesics belong to X for any two vertices a, b \in X. A set X is a convex dominating...

    Full text available to download

  • Weakly convex and convex domination numbers of some products of graphs

    If $G=(V,E)$ is a simple connected graph and $a,b\in V$, then a shortest $(a-b)$ path is called a $(u-v)$-{\it geodesic}. A set $X\subseteq V$ is called {\it weakly convex} in $G$ if for every two vertices $a,b\in X$ exists $(a-b)$- geodesic whose all vertices belong to $X$. A set $X$ is {\it convex} in $G$ if for every $a,b\in X$ all vertices from every $(a-b)$-geodesic belong to $X$. The {\it weakly convex domination number}...