Filtry
wszystkich: 590
Wyniki wyszukiwania dla: BACKSTEPPING, NEURAL NETWORKS, RBF, DYNAMIC SHIP POSITIONING
-
Dynamic Bankruptcy Prediction Models for European Enterprises
PublikacjaThis manuscript is devoted to the issue of forecasting corporate bankruptcy. Determining a firm’s bankruptcy risk is one of the most interesting topics for investors and decision-makers. The aim of the paper is to develop and to evaluate dynamic bankruptcy prediction models for European enterprises. To conduct this objective, four forecasting models are developed with the use of four different methods—fuzzy sets, recurrent and...
-
Fusion-based Representation Learning Model for Multimode User-generated Social Network Content
PublikacjaAs mobile networks and APPs are developed, user-generated content (UGC), which includes multi-source heterogeneous data like user reviews, tags, scores, images, and videos, has become an essential basis for improving the quality of personalized services. Due to the multi-source heterogeneous nature of the data, big data fusion offers both promise and drawbacks. With the rise of mobile networks and applications, UGC, which includes...
-
Diagnostic testing of marine propulsion systems with internal combustion engines by means of vibration measurement and results analysis
PublikacjaIn this paper selected issues concerning vibration diagnosis of the mechanical system within marine propulsion units have been presented, carried out on the basis of experimental examinations of a real object in which an exceedance of the allowable vibration’s level had been observed. Used diagnosing system has been characterised. A procedure of longitudinal and transverse vibrations shaft lines of the mechanical system within...
-
Deep Features Class Activation Map for Thermal Face Detection and Tracking
PublikacjaRecently, capabilities of many computer vision tasks have significantly improved due to advances in Convolutional Neural Networks. In our research, we demonstrate that it can be also used for face detection from low resolution thermal images, acquired with a portable camera. The physical size of the camera used in our research allows for embedding it in a wearable device or indoor remote monitoring solution for elderly and disabled...
-
Early warning models against bankruptcy risk for Central European and Latin American enterprises
PublikacjaThis article is devoted to the issue of forecasting the bankruptcy risk of enterprises in Latin America and Central Europe. The author has used statistical and soft computing methods to program the prediction models. It compares the effectiveness of twelve different early warningmodels for forecasting the bankruptcy risk of companies. In the research conducted, the author used data on 185 companies listed on the Warsaw Stock Exchange...
-
COVID-19 severity forecast based on machine learning and complete blood count data
PublikacjaProper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose...
-
COVID-19 severity forecast based on machine learning and complete blood count data
PublikacjaProper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose...
-
Data Acquisition and Processing for GeoAI Models to Support Sustainable Agricultural Practices
PublikacjaThere are growing opportunities to leverage new technologies and data sources to address global problems related to sustainability, climate change, and biodiversity loss. The emerging discipline of GeoAI resulting from the convergence of AI and Geospatial science (Geo-AI) is enabling the possibility to harness the increasingly available open Earth Observation data collected from different constellations of satellites and sensors...
-
Automatic Rhythm Retrieval from Musical Files
PublikacjaThis paper presents a comparison of the effectiveness of two computational intelligence approaches applied to the task of retrieving rhythmic structure from musical files. The method proposed by the authors of this paper generates rhythmic levels first, and then uses these levels to compose rhythmic hypotheses. Three phases: creating periods, creating simplified hypotheses and creating full hypotheses are examined within this study....
-
Investigating Feature Spaces for Isolated Word Recognition
PublikacjaThe study addresses the issues related to the appropriateness of a two-dimensional representation of speech signal for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and time-frequency signal representation converted to the investigated feature spaces. In particular, waveforms and fractal dimension features of the signal were chosen for the time domain, and...
-
AN ENERGY APPROACH TO THE FATIGUE LIFE OF SHIP PROPULSION SYSTEMS
PublikacjaThe conducted research investigations aimed to carry out an identification of the constructional materials fatigue state of the ship propulsions’ rotational mechanical units for diagnostic purposes. The fatigue cracks of the elements transmitting mechanical energy streams from the propulsion engines to the ship propellers or to the generators of the ship’s electric power station stand for a primary reason for the secondary, usually...
-
Underground Water Level Prediction in Remote Sensing Images Using Improved Hydro Index Value with Ensemble Classifier
PublikacjaThe economic sustainability of aquifers across the world relies on accurate and rapid estimates of groundwater storage changes, but this becomes difficult due to the absence of insitu groundwater surveys in most areas. By closing the water balance, hydrologic remote sensing measures offer a possible method for quantifying changes in groundwater storage. However, it is uncertain to what extent remote sensing data can provide an...
-
Optimized Deep Learning Model for Flood Detection Using Satellite Images
PublikacjaThe increasing amount of rain produces a number of issues in Kerala, particularly in urban regions where the drainage system is frequently unable to handle a significant amount of water in such a short duration. Meanwhile, standard flood detection results are inaccurate for complex phenomena and cannot handle enormous quantities of data. In order to overcome those drawbacks and enhance the outcomes of conventional flood detection...
-
Economical methods for measuring road surface roughness
PublikacjaTwo low-cost methods of estimating the road surface condition are presented in the paper, the first one based on the use of accelerometers and the other on the analysis of images acquired from cameras installed in a vehicle. In the first method, miniature positioning and accelerometer sensors are used for evaluation of the road surface roughness. The device designed for installation in vehicles is composed of a GPS receiver and...
-
High frequency oscillations in human memory and cognition: a neurophysiological substrate of engrams?
PublikacjaDespite advances in understanding the cellular and molecular processes underlying memory and cognition, and recent successful modulation of cognitive performance in brain disorders, the neurophysiological mechanisms remain underexplored. High frequency oscillations beyond the classic electroencephalogram spectrum have emerged as a potential neural correlate of fundamental cognitive processes. High frequency oscillations are detected...
-
Projektowanie i eksploatacja dróg szynowych z wykorzystaniem mobilnych pomiarów satelitarnych
PublikacjaNiniejsza monografia zawiera szczegółowy opis aktywnych sieci geodezyjnych GNSS oraz modelowania dokładności określania pozycji w pomiarach satelitarnych. Omówiono również opracowaną technikę mobilnych pomiarów satelitarnych toru kolejowego oraz aplikacje związane z jej zastosowaniem w projektowaniu i eksploatacji dróg szynowych. Autorzy zawarli w pracy wyniki swoich badań, wykonywanych na przestrzeni lat 2009–2015. Badania przeprowadzono...
-
Fading Analysis in Off-Body Channels in a Straight Metallic Corridor in a Passenger Ferry Environment
PublikacjaThis paper presents a fading analysis for Body Area Networks off-body communications at 2.45 GHz in a passenger ferry environment. The results are based on measurements performed for dynamic scenarios in a straight metallic corridor. Two components, extracted from instantaneous system loss values, have been analysed: small- and large-scales fading, separately for each scenario. Well-known probability distribution functions have...
-
Fractional Calculus Evaluation of Hyaluronic Acid Crosslinking in a Nanoscopic Part of Articular Cartilage Model System
PublikacjaThis work presents a study of the mechanism of physical crosslinking of hyaluronic acid in the presence of common phospholipids in synovial joint organ systems. Molecular dynamic simulations have been executed to understand the formation of hyaluronan networks at various phospholipid concentrations. The results of the simulations suggest that the mechanisms exhibit subdiffusion characteristics. Transportation quantities derive...
-
The voltage on bus bars of the main switchboard of the car carrier electrical power system at sea trials during a sea voyage
Dane BadawczeThe dataset is part of the research results on the quality of supply voltage on bus bars of the main switchboard of the ship's electrical power system in different states of ship exploitation. The attached dataset contains the measurement results conducted onboard the car carrier at sea trials. The data were recorded during a sea voyage, under normal...
-
Damage Control in Warships
PublikacjaAs a result of dynamic quantitative and qualitative developments in the maritime industry its participants face harder and harder challenges pertaining to safety of ships and navigation. Practice has shown that even very well organised fleets are harassed by emergencies and accidents that can be neither predicted nor absolutely avoided. In order to counter the occuring emergencies and accidents, and to minimize their effects damage...
-
The Matter of Decision-Making Control Over Operation Processes of Marine Power Plant Systems with the Use of their Models in the form of Semi-Markov Decision-Making Processes
PublikacjaThe article presents the possibility to control the real operation process of an arbitrary device installed in the marine power plant based on the four-state semi-Markov process, being the model of the process, which describes the transition process of operational states of the device and the transition process of its technical states. All these states are precisely defined for the ship main engine (SG). A hypothesis is proposed...
-
MobileNet family tailored for Raspberry Pi
PublikacjaWith the advances in systems-on-a-chip technologies, there is a growing demand to deploy intelligent vision systems on low-cost microcomputers. To address this challenge, much of the recent research has focused on reducing the model size and computational complexity of contemporary convolutional neural networks (CNNs). The state-of-the-art lightweight CNN is MobileNetV3. However, it was designed to achieve a good trade-off between...
-
Performance and Energy Aware Training of a Deep Neural Network in a Multi-GPU Environment with Power Capping
PublikacjaIn this paper we demonstrate that it is possible to obtain considerable improvement of performance and energy aware metrics for training of deep neural networks using a modern parallel multi-GPU system, by enforcing selected, non-default power caps on the GPUs. We measure the power and energy consumption of the whole node using a professional, certified hardware power meter. For a high performance workstation with 8 GPUs, we were...
-
Playback detection using machine learning with spectrogram features approach
PublikacjaThis paper presents 2D image processing approach to playback detection in automatic speaker verification (ASV) systems using spectrograms as speech signal representation. Three feature extraction and classification methods: histograms of oriented gradients (HOG) with support vector machines (SVM), HAAR wavelets with AdaBoost classifier and deep convolutional neural networks (CNN) were compared on different data partitions in respect...
-
How to Sort Them? A Network for LEGO Bricks Classification
PublikacjaLEGO bricks are highly popular due to the ability to build almost any type of creation. This is possible thanks to availability of multiple shapes and colors of the bricks. For the smooth build process the bricks need to properly sorted and arranged. In our work we aim at creating an automated LEGO bricks sorter. With over 3700 different LEGO parts bricks classification has to be done with deep neural networks. The question arises...
-
Mixed-use buildings as the basic unit that shapes the housing environment of smart cities of the future
PublikacjaThe contemporary approach to creating the residential function is confronted with the trend of increasing the volume of buildings and expectations regarding the future urban environment focused on sustainable development. This paper presents an overview of the residential structure in the context of defined thematic scopes. Namely, it is a systemic approach to the problem of designing mixed-use buildings which create a modern residential...
-
BETWEEN IDEA AND INTERPRETATION - DESIGN PROCESS AUGMENTATION
PublikacjaThe following paper investigates the idea of reducing the human digital intervention to a minimum during the advanced design process. Augmenting the outcome attributes beyond the designer's capabilities by computational design methods, data collection, data computing and digital fabrication, altogether imitating the human design process. The primary technical goal of the research was verification of restrictions and abilities used...
-
Prediction of maximum tensile stress in plain-weave composite laminates with interacting holes via stacked machine learning algorithms: A comparative study
PublikacjaPlain weave composite is a long-lasting type of fabric composite that is stable enough when being handled. Open-hole composites have been widely used in industry, though they have weak structural performance and complex design processes. An extensive number of material/geometry parameters have been utilized for designing these composites, thereby an efficient computational tool is essential for that purpose. Different Machine Learning...
-
Algorithms for Ship Movement Prediction for Location Data Compression
PublikacjaDue to safety reasons, the movement of ships on the sea, especially near the coast should be tracked, recorded and stored. However, the amount of vessels which trajectories should be tracked by authorized institutions, often in real time, is usually huge. What is more, many sources of vessels position data (radars, AIS) produces thousands of records describing route of each tracked object, but lots of that records are correlated...
-
A comparative analysis of the effectiveness of corporate bankruptcy prediction models based on financial ratios: Evidence from Colombia, 2008 to 2015
PublikacjaLogit and discriminant analyses have been used for corporate bankruptcy prediction in several studies since the last century. In recent years there have been dozens of studies comparing the several models available, including the ones mentioned above and also probit, artificial neural networks, support vector machines, among others. For the first time for Colombia, this paper presents a comparative analysis of the effectiveness...
-
Soft Sensor Application in Identification of the Activated Sludge Bulking Considering the Technological and Economical Aspects of Smart Systems Functioning
PublikacjaThe paper presented the methodology for the construction of a soft sensor used for activated sludge bulking identification. Devising such solutions fits within the current trends and development of a smart system and infrastructure within smart cities. In order to optimize the selection of the data-mining method depending on the data collected within a wastewater treatment plant (WWTP), a number of methods were considered, including:...
-
Performance Analysis of the OpenCL Environment on Mobile Platforms
PublikacjaToday’s smartphones have more and more features that so far were only assigned to personal computers. Every year these devices are composed of better and more efficient components. Everything indicates that modern smartphones are replacing ordinary computers in various activities. High computing power is required for tasks such as image processing, speech recognition and object detection. This paper analyses the performance of...
-
Rapid Surrogate-Aided Multi-Criterial Optimization of Compact Microwave Passives Employing Machine Learning and ANNs
PublikacjaThis article introduces an innovative method for achieving low-cost and reliable multi-objective optimization (MO) of microwave passive circuits. The technique capitalizes on the attributes of surrogate models, specifically artificial neural networks (ANNs), and multi-resolution electromagnetic (EM) analysis. We integrate the search process into a machine learning (ML) framework, where each iteration produces multiple infill points...
-
Automatic Emotion Recognition in Children with Autism: A Systematic Literature Review
PublikacjaThe automatic emotion recognition domain brings new methods and technologies that might be used to enhance therapy of children with autism. The paper aims at the exploration of methods and tools used to recognize emotions in children. It presents a literature review study that was performed using a systematic approach and PRISMA methodology for reporting quantitative and qualitative results. Diverse observation channels and modalities...
-
Neural Network-Based Sequential Global Sensitivity Analysis Algorithm
PublikacjaPerforming global sensitivity analysis (GSA) can be challenging due to the combined effect of the high computational cost, but it is also essential for engineering decision making. To reduce this cost, surrogate modeling such as neural networks (NNs) are used to replace the expensive simulation model in the GSA process, which introduces the additional challenge of finding the minimum number of training data samples required to...
-
Predictions of cervical cancer identification by photonic method combined with machine learning
PublikacjaCervical cancer is one of the most commonly appearing cancers, which early diagnosis is of greatest importance. Unfortunately, many diagnoses are based on subjective opinions of doctors—to date, there is no general measurement method with a calibrated standard. The problem can be solved with the measurement system being a fusion of an optoelectronic sensor and machine learning algorithm to provide reliable assistance for doctors...
-
Do global brands contribute to the economy of their country of origin? A dynamic spatial approach
PublikacjaPurpose - Brand positioning based on the brand’s country of origin is at the centre of attention in international marketing. It is evident that global brands constitute critical intangible assets for businesses and places. However, it is not clear how they contribute to national economies. This paper aims to discuss the significance of brands as contributing to the value of their companies but also helping to leverage national...
-
Hybrid DUMBRA: an efficient QoS routing algorithm for networks with DiffServ architecture
PublikacjaDynamic routing is very important issue of current packet networks. It may support the QoS and help utilize available network resources. Unfortunately current routing mechanisms are not sufficient to fully support QoS. Although many research has been done in this area no generic QoS routing algorithm has been proposed that could be used across all network structures. Existing QoS routing algorithms are either dedicated to limited...
-
The Influence of Selecting Regions from Endoscopic Video Frames on The Efficiency of Large Bowel Disease Recognition Algorithms
PublikacjaThe article presents our research in the field of the automatic diagnosis of large intestine diseases on endoscopic video. It focuses on the methods of selecting regions of interest from endoscopic video frames for further analysis by specialized disease recognition algorithms. Four methods of selecting regions of interest have been discussed: a. trivial, b. with the deletion of characteristic, endoscope specific additions to the...
-
A review on application of artificial neural network (ANN) for performance and emission characteristics of diesel engine fueled with biodiesel-based fuels
PublikacjaBiodiesel has been emerging as a potential and promising biofuel for the strategy of reducing toxic emissions and improving engine performance. Computational methods aiming to offer numerical solutions were inevitable as a study methodology which was sometimes considered the only practical method. Artificial neural networks (ANN) were data-processing systems, which were used to tackle many issues in engineering and science, especially...
-
A new multi-process collaborative architecture for time series classification
PublikacjaTime series classification (TSC) is the problem of categorizing time series data by using machine learning techniques. Its applications vary from cybersecurity and health care to remote sensing and human activity recognition. In this paper, we propose a novel multi-process collaborative architecture for TSC. The propositioned method amalgamates multi-head convolutional neural networks and capsule mechanism. In addition to the discovery...
-
Online sound restoration system for digital library applications
PublikacjaAudio signal processing algorithms were introduced to the new online non-commercial service for audio restoration intended to enhance the content of digitized audio repositories. Missing or distorted audio samples are predicted using neural networks and a specific implementation of the Jannsen interpolation method based on the autoregressive model (AR) combined with the iterative restoring of missing signal samples. Since the distortion...
-
Computed aided system for separation and classification of the abnormal erythrocytes in human blood
PublikacjaThe human peripheral blood consists of cells (red cells, white cells, and platelets) suspended in plasma. In the following research the team assessed an influence of nanodiamond particles on blood elements over various periods of time. The material used in the study consisted of samples taken from ten healthy humans of various age, different blood types and both sexes. The markings were leaded by adding to the blood unmodified...
-
Utilising AI Models to Analyse the Relationship between Battlefield Developments in the Russian-Ukrainian War and Fluctuations in Stock Market Values
PublikacjaThis study examines the impact of battlefield developments in the ongoing Russian–Ukrainian war, which to date has lasted over 1000 days, on the stock prices of defence corporations such as BAE Systems, Booz Allen Hamilton, Huntington Ingalls, and Rheinmetall AG. Stock prices were analysed alongside sentiment data extracted from news articles, and processed using machine learning models leveraging natural...
-
Diagnostyka łożysk silnika indukcyjnego na podstawie prądu zasilającego przy użyciu sztucznych sieci neuronowych
PublikacjaW artykule zawarto wyniki badań dotyczące diagnostyki łożysk silnika indukcyjnego na podstawie pomiarów prądu zasilającego z wyko-rzystaniem sztucznych sieci neuronowych. Zaprezentowano wyniki uczenia sieci oraz rezultaty testów przeprowadzonych na danych spoza zbioru uczącego. Badania wykonane zostały na obiektach z celowo wprowadzonymi uszkodzeniami łożysk. Przedstawiona nowa koncepcja zakłada użycie zestawu sieci neuronowych...
-
Active Power Quality Controllers
PublikacjaDynamic Static Synchronous Compensator is the most important controller for distribution networks and probably in SEEN. It has been widely used since the 1990s to regulate system voltage precisely, improve voltage profile, reduce voltage harmonics, reduce transient voltage disturbances and load compensation. Rather than using conventional capacitors and inductors combined with fast switches, the D-STATCOM uses a power-electronics...
-
Badanie i analiza efektywności alokacji strumieni danych w heterogenicznej sieci WBAN
PublikacjaW niniejszej dysertacji doktorskiej poddano dyskusji efektywność alokacji strumieni danych w heterogenicznej radiowej sieci WBAN (Wireless Body Area Networks). Biorąc pod uwagę dynamiczny rozwój nowoczesnych sieci radiokomunikacyjnych piątej generacji (5G), którego część stanowią radiowe sieci działające w obrębie ciała człowieka, bardzo ważnym aspektem są metody maksymalizujące wykorzystanie dostępnych zasobów czasowo –częstotliwościowych...
-
A Highly Sensitive Planar Microwave Sensor for Detecting Direction and Angle of Rotation
PublikacjaThis article presents a technique based on a modified complementary split-ring resonator (CSRR) to detect angular displacement and direction of rotation with high resolution and sensitivity over a wide dynamic range. The proposed microwave planar sensor takes advantage of the asymmetry of the sensor geometry and measures the angle of rotation in terms of the change in the relative phase of the reflection coefficients. The sensor...
-
Problems of modelling toxic compounds emitted by a marine internal combustion engine for the evaluation of its structure parameters
PublikacjaThe paper presents the possibility of using an analytical study of the engine exhaust ignition to evaluate the technical condition of the selected components. Software tools available for the analysis of experimental data commonly use multiple regression model that allows the study of the effects and iterations between model input quantities and one output variable. The use of multi-equation models gives a lot of freedom in the...
-
Preprocessing of Document Images Based on the GGD and GMM for Binarization of Degraded Ancient Papyri Images
PublikacjaThresholding of document images is one of the most relevant operations that influence the final results of their further analysis. Although many image binarization methods have been proposed during recent several years, starting from global thresholding, through local and adaptive methods, to more sophisticated multi-stage algorithms and the use of deep convolutional neural networks, proper thresholding of degraded historical...