Wyniki wyszukiwania dla: LEARNING DESIGN
-
The effects of relational and psychological capital on work engagement: the mediation of learning goal orientation
PublikacjaPurpose – This paper proposes a research model in which learning goal orientation (LGO) mediates the impacts of relational capital and psychological capital (PsyCap) on work engagement. Design/methodology/approach – Data obtained from 475 managers and employees in the manufacturing and service industries in Poland were utilized to assess the linkages given above. Common method variance was controlled by the unmeasured latent method...
-
Strategic Flexibility as a Mediator in Relationship between Managerial Decisions and Organizational Learning: Ambidexterity Perspective
PublikacjaPurpose: The purpose of the article is to determine strategic flexibility in the relationship between managerial decisions and organizational learning. The analyses are conducted in the ambidexterity convection. Design/Methodology/Approach: The study was conducted at a textile company. The company is a leader in the textile recycling industry in Poland. Empirical data were collected using the PAPI technique. The survey questionnaire...
-
Fast Machine-Learning-Enabled Size Reduction of Microwave Components Using Response Features
PublikacjaAchieving compact size has emerged as a key consideration in modern microwave design. While structural miniaturization can be accomplished through judicious circuit architecture selection, precise parameter tuning is equally vital to minimize physical dimensions while meeting stringent performance requirements for electrical characteristics. Due to the intricate nature of compact structures, global optimization is recommended,...
-
Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures
PublikacjaMany studies have been performed to put quantifying uncertainties into the seismic risk assessment of reinforced concrete (RC) buildings. This paper provides a risk-assessment support tool for purpose of retrofitting and potential design strategies of RC buildings. Machine Learning (ML) algorithms were developed in Python software by innovative methods of hyperparameter optimization, such as halving search, grid search, random...
-
Machine-Learning Methods for Estimating Performance of Structural Concrete Members Reinforced with Fiber-Reinforced Polymers
PublikacjaIn recent years, fiber-reinforced polymers (FRP) in reinforced concrete (RC) members have gained significant attention due to their exceptional properties, including lightweight construction, high specific strength, and stiffness. These attributes have found application in structures, infrastructures, wind power equipment, and various advanced civil products. However, the production process and the extensive testing required for...
-
Deep-Learning-Based Precise Characterization of Microwave Transistors Using Fully-Automated Regression Surrogates
PublikacjaAccurate models of scattering and noise parameters of transistors are instrumental in facilitating design procedures of microwave devices such as low-noise amplifiers. Yet, data-driven modeling of transistors is a challenging endeavor due to complex relationships between transistor characteristics and its designable parameters, biasing conditions, and frequency. Artificial neural network (ANN)-based methods, including deep learning...
-
Machine-Learning-Based Global Optimization of Microwave Passives with Variable-Fidelity EM Models and Response Features
PublikacjaMaximizing microwave passive component performance demands precise parameter tuning, particularly as modern circuits grow increasingly intricate. Yet, achieving this often requires a comprehensive approach due to their complex geometries and miniaturized structures. However, the computational burden of optimizing these components via full-wave electromagnetic (EM) simulations is substantial. EM analysis remains crucial for circuit...
-
Investigating the Effects of Ground-Transmitted Vibrations from Vehicles on Buildings and Their Occupants, with an Idea for Applying Machine Learning
PublikacjaVibrations observed as a result of moving vehicles can potentially affect both buildings and the people inside them. The impacts of these vibrations are complex, affected by a number of parameters, like amplitude, frequency, and duration, as well as by the properties of the soil beneath. These factors together lead to various effects, from slight disruptions to significant structural damage. Occupants inside affected buildings...
-
Energy consumption optimization in wastewater treatment plants: Machine learning for monitoring incineration of sewage sludge
PublikacjaBiomass management in terms of energy consumption optimization has become a recent challenge for developed countries. Nevertheless, the multiplicity of materials and operating parameters controlling energy consumption in wastewater treatment plants necessitates the need for sophisticated well-organized disciplines in order to minimize energy consumption and dissipation. Sewage sludge (SS) disposal management is the key stage of...
-
BETWEEN IDEA AND INTERPRETATION - DESIGN PROCESS AUGMENTATION
PublikacjaThe following paper investigates the idea of reducing the human digital intervention to a minimum during the advanced design process. Augmenting the outcome attributes beyond the designer's capabilities by computational design methods, data collection, data computing and digital fabrication, altogether imitating the human design process. The primary technical goal of the research was verification of restrictions and abilities used...
-
Assessment of Failure Occurrence Rate for Concrete Machine Foundations Used in Gas and Oil Industry by Machine Learning
PublikacjaConcrete machine foundations are structures that transfer loads from machines in operation to the ground. The design of such foundations requires a careful analysis of the static and dynamic effects caused by machine exploitation. There are also other substantial differences between ordinary concrete foundations and machine foundations, of which the main one is that machine foundations are separated from the building structure....
-
Multimodal learning application with interactive animated character. [Multimodalna aplikacja edukacyjna wykorzystująca interaktywną animowaną postać]
PublikacjaThe aim of this study is to design a computer application that may assist teachers and therapists in multimodal manner in their work with impaired or disabled children. The application can be operated in many different ways, giving to a child with special educational needs a possibility to learn and train many skills or treat speech disorders. The main stress in this research is on the creation of animated character that will serve...
-
Source code - AI models (MLM1-5 - series I-III - QNM opt)
Dane BadawczeSource code - AI models (MLM1-5 - series I-III - QNM opt) for the paper "Computational Complexity and Its Influence on Concrete Compressive Strength Prediction Capabilities of Machine Learning Models for Concrete Mix Design Support" accepted for publication.
-
Low-Cost and Highly-Accurate Behavioral Modeling of Antenna Structures by Means of Knowledge-Based Domain-Constrained Deep Learning Surrogates
PublikacjaThe awareness and practical benefits of behavioral modeling methods have been steadily growing in the antenna engineering community over the last decade or so. Undoubtedly, the most important advantage thereof is a possibility of a dramatic reduction of computational expenses associated with computer-aided design procedures, especially those relying on full-wave electromagnetic (EM) simulations. In particular, the employment of...
-
RAGN-R: A multi-subject ensemble machine-learning method for estimating mechanical properties of advanced structural materials
PublikacjaThe utilization of advanced structural materials, such as preplaced aggregate concrete (PAC), fiber-reinforced concrete (FRC), and FRC beams has revolutionized the field of civil engineering. These materials exhibit enhanced mechanical properties compared to traditional construction materials, offering engineers unprecedented opportunities to optimize the design, construction, and performance of structures and infrastructures....
-
Reliable computationally-efficient behavioral modeling of microwave passives using deep learning surrogates in confined domains
PublikacjaThe importance of surrogate modeling techniques has been steadily growing over the recent years in high-frequency electronics, including microwave engineering. Fast metamodels are employed to speedup design processes, especially those conducted at the level of full-wave electromagnetic (EM) simulations. The surrogates enable massive system evaluations at nearly EM accuracy and negligible costs, which is invaluable in parameter...
-
How to Design Affect-aware Educational Systems – the AFFINT Process Approach
PublikacjaComputer systems, that support learning processes, can adapt to the needs and states of a learner. The adaptation might directly address the knowledge deficits and most tutoring systems apply an adaptable learning path of that kind. Apart from a preliminary knowledge state, there are more factors, that influence education effectiveness and among those there are fluctuating emotional states. The tutoring systems may recognize or...
-
MANAGING LEARNING PROCESS WITH E-LEARNING TOOL
PublikacjaThis article presents one possibility to employ Moodle, the free e-Leaning platform, to organize learning understood as a process. Behavioral approach and application to massive courses are assumed. A case study is presented, where the introduction of Moodle resulted in better student performance in homework
-
Transforming urban design education through international competitions: a 20-year perspective
PublikacjaOver the past two decades, international urban design competitions have transformed architectural education by fostering creativity and interdisciplinary learning. This article provides a 20-year perspective by focusing on five of the most prominent competitions: Europan, UIA Student Competitions, ULI Hines Student Competitions, Arturbain.fr and the Global Schindler Award. Through a comparative analysis of these competitions, the...
-
E-learning versus traditional learning - Polish case
PublikacjaE-learning jest współczesnym fenomenem, który pozwala na dostęp do kształcenia i treści edukacyjnych, niezależnie od czasu i miejsca, dla każdego użytkownika. E-learnig tworzy ogromne możliwości dla uczelni akademickich, organizacji, instytucji komercyjnych i szkoleniowych, dostarczając na żądanie kształcenia i szkoleń w wirtualnym środowisku. Student może stworzyć własny plan kształcenia, dostosowując go do swojej pracy i sytuacji...
-
Deep Learning
PublikacjaDeep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...
-
Data-driven Models for Predicting Compressive Strength of 3D-printed Fiber-Reinforced Concrete using Interpretable Machine Learning Algorithms
Publikacja3D printing technology is growing swiftly in the construction sector due to its numerous benefits, such as intricate designs, quicker construction, waste reduction, environmental friendliness, cost savings, and enhanced safety. Nevertheless, optimizing the concrete mix for 3D printing is a challenging task due to the numerous factors involved, requiring extensive experimentation. Therefore, this study used three machine learning...
-
The CDIO model in architectural education and research by design
PublikacjaArchitectural education has always been related to experimentation: that is, defining concepts, drawing sketches, working on models, then testing and modifying them. This activity mirrors the CDIO learning methods and objectives. Despite this, research studies into the applicability of the CDIO model in architectural curricula are scarce. In the discipline of architecture, hands-on experiences are associated not only with one of...
-
Lead-free bismuth-based perovskites coupled with g–C3N4: A machine learning based novel approach for visible light induced degradation of pollutants
PublikacjaThe use of metal halide perovskites in photocatalytic processes has been attempted because of their unique optical properties. In this work, for the first time, Pb-free Bi-based perovskites of the Cs3Bi2X9 type (X = Cl, Br, I, Cl/Br, Cl/I, Br/I) were synthesized and subjected to comprehensive morphological, structural, and surface analyses, and photocatalytic properties in the phenol degradation reaction were examined. Furthermore,...
-
Prediction of maximum tensile stress in plain-weave composite laminates with interacting holes via stacked machine learning algorithms: A comparative study
PublikacjaPlain weave composite is a long-lasting type of fabric composite that is stable enough when being handled. Open-hole composites have been widely used in industry, though they have weak structural performance and complex design processes. An extensive number of material/geometry parameters have been utilized for designing these composites, thereby an efficient computational tool is essential for that purpose. Different Machine Learning...
-
Bayesian Optimization for solving high-frequency passive component design problems
PublikacjaIn this paper, the performance of the Bayesian Optimization (BO) technique applied to various problems of microwave engineering is studied. Bayesian optimization is a novel, non-deterministic, global optimization scheme that uses machine learning to solve complex optimization problems. However, each new optimization scheme needs to be evaluated to find its best application niche, as there is no universal technique that suits all...
-
Methodology for hospital design in architectural education
PublikacjaThe architecture of a hospital should be a response to strong user requirements. Recommendations on how to shape the environment of such facilities are highly complex, integrating guidelines from many fields of science. If contradictions between them exist, the designer is required to set priorities for spatial activities. This issue is particularly important during architectural education. The learning process should include projects...
-
Deep Learning: A Case Study for Image Recognition Using Transfer Learning
PublikacjaDeep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...
-
Model-free and Model-based Reinforcement Learning, the Intersection of Learning and Planning
PublikacjaMy doctoral dissertation is intended as the compound of four publications considering: structure and randomness in planning and reinforcement learning, continuous control with ensemble deep deterministic policy gradients, toddler-inspired active representation learning, and large-scale deep reinforcement learning costs.
-
Artificial Neural Networks as an architectural design tool- generating new detail forms based on the Roman Corinthian order capital
PublikacjaThe following paper presents the results of the research in the field of the machine learning, investigating the scope of application of the artificial neural networks algorithms as a tool in architectural design. The computational experiment was held using the backward propagation of errors method of training the artificial neural network, which was trained based on the geometry of the details of the Roman Corinthian order capital....
-
Deep learning in the fog
PublikacjaIn the era of a ubiquitous Internet of Things and fast artificial intelligence advance, especially thanks to deep learning networks and hardware acceleration, we face rapid growth of highly decentralized and intelligent solutions that offer functionality of data processing closer to the end user. Internet of Things usually produces a huge amount of data that to be effectively analyzed, especially with neural networks, demands high...
-
Olgun Aydin dr
OsobyOlgun Aydin finished his PhD by publishing a thesis about Deep Neural Networks. He works as a Principal Machine Learning Engineer in Nike, and works as Assistant Professor in Gdansk University of Technology in Poland. Dr. Aydin is part of editorial board of "Journal of Artificial Intelligence and Data Science" Dr. Aydin served as Vice-Chairman of Why R? Foundation and is member of Polish Artificial Intelligence Society. Olgun is...
-
Model szkolenia "Blended learning" z wykorzystaniem platformy Oracle I-learning.
PublikacjaW artykule zaproponowano modele organizacyjne szkoleń "blended learning", które pokazują możliwości współpracy firm prywatnych z instytucjami edukacyjnymi w dziedzinie e-learningu. W ramach wspólnego eksperymentu firm Oracle, Incenti S.A., WiedzaNet Sp. z o.o. oraz Centrum Edukacji Niestacjonarnej Politechniki Gdańskiej w semestrze letnim roku akademickiego 2003/2004 udostępniony będzie kurs dla studentów Wydziału Inzynierii Lądowej...
-
Open source solution LMS for supporting e-learning/blended learning engineers
PublikacjaW artykule zaprezentowano darmowe systemy zarządzania kształceniem na odległość wspomagające e-learningowe/mieszane nauczanie inżynierów. Pierwszy system TeleCAD został opracowany w ramach projektu Leonardo da Vinci (1998-2001). System TeleCAD był propozycją w projekcie V Ramowy CURE (2003-2006). W roku 2003 dzięki projektowi Leonardo da Vinci EMDEL (2001-2005) Centrum Edukacji Niestacjonarnej Politechniki Gdańskiej wybrało system...
-
Deep Learning Approaches in Histopathology
Publikacja -
e-Learning in Tourism Education
Publikacja -
Online Learning Based on Prototypes
Publikacja -
Distributed Learning with Data Reduction
Publikacja -
Neural networks and deep learning
PublikacjaIn this chapter we will provide the general and fundamental background related to Neural Networks and Deep Learning techniques. Specifically, we divide the fundamentals of deep learning in three parts, the first one introduces Deep Feed Forward Networks and the main training algorithms in the context of optimization. The second part covers Convolutional Neural Networks (CNN) and discusses their main advantages and shortcomings...
-
Machine Learning and Deep Learning Methods for Fast and Accurate Assessment of Transthoracic Echocardiogram Image Quality
PublikacjaHigh-quality echocardiogram images are the cornerstone of accurate and reliable measurements of the heart. Therefore, this study aimed to develop, validate and compare machine learning and deep learning algorithms for accurate and automated assessment of transthoracic echocardiogram image quality. In total, 4090 single-frame two-dimensional transthoracic echocardiogram...
-
Interactive Prototypes in Teaching User-Centred Design and Business Process Modelling
PublikacjaThis publication describes experiences gathered during the use of interactive prototyping in two areas: design of user interfaces for a touch screen information kiosk and interactive prototyping of business processes. Prototyping is promoted here as a technique useful for both visualizing design concepts and for stimulating communication within relevant teams. Developing interactive prototypes of use interfaces is discussed here...
-
Acoustical Standards Used in Design of School Spaces = Standardy akustyczne używane w projektowaniu przestrzeni szkoły
PublikacjaArtykuł prezentuje wytyczne projektowania akustyki wnętrz w pomieszczeniach szkolnych zawarte w europejskich i amerykańskich standardach technicznych. Opisane są także aktualne polskie przepisy odnoszące się do akustyki wnętrza. We wnioskach zaprezentowano wytyczne dla poprawy komfortu akustycznego w szkołach. // Design guidelines for interior acoustics in learning spaces included in European and American technical standards and...
-
Active Learning on Ensemble Machine-Learning Model to Retrofit Buildings Under Seismic Mainshock-Aftershock Sequence
PublikacjaThis research presents an efficient computational method for retrofitting of buildings by employing an active learning-based ensemble machine learning (AL-Ensemble ML) approach developed in OpenSees, Python and MATLAB. The results of the study shows that the AL-Ensemble ML model provides the most accurate estimations of interstory drift (ID) and residual interstory drift (RID) for steel structures using a dataset of 2-, to 9-story...
-
A consensus-based approach to the distributed learning
Publikacja -
Prototype selection algorithms for distributed learning
Publikacja -
An agent-based framework for distributed learning
Publikacja -
Revisiting Supervision for Continual Representation Learning
Publikacja"In the field of continual learning, models are designed to learn tasks one after the other. While most research has centered on supervised continual learning, there is a growing interest in unsupervised continual learning, which makes use of the vast amounts of unlabeled data. Recent studies have highlighted the strengths of unsupervised methods, particularly self-supervised learning, in providing robust representations. The improved...
-
Some aspects of blended-learning education
Publikacja -
Note on universal algoritms for learning theory
PublikacjaW 2001 Cucker i Smale zaproponowali nowe podejście do teorii uczenia się w oparciu o problematykę teorii aproksymacji.W 2005 i 2007 Bivev, Cohen, Dahmen, DeVore i Temlyakov opublikowali dwie prace z teorii uczenia się. W omawianej publikacji uogólniliśmy ich rezultaty jednocześnie upraszczając dowody.
-
Speech Analytics Based on Machine Learning
PublikacjaIn this chapter, the process of speech data preparation for machine learning is discussed in detail. Examples of speech analytics methods applied to phonemes and allophones are shown. Further, an approach to automatic phoneme recognition involving optimized parametrization and a classifier belonging to machine learning algorithms is discussed. Feature vectors are built on the basis of descriptors coming from the music information...