Wyniki wyszukiwania dla: deep neural network layer - MOST Wiedzy

Wyszukiwarka

Wyniki wyszukiwania dla: deep neural network layer

Wyniki wyszukiwania dla: deep neural network layer

  • Detection of Lexical Stress Errors in Non-Native (L2) English with Data Augmentation and Attention

    Publikacja

    - Rok 2021

    This paper describes two novel complementary techniques that improve the detection of lexical stress errors in non-native (L2) English speech: attention-based feature extraction and data augmentation based on Neural Text-To-Speech (TTS). In a classical approach, audio features are usually extracted from fixed regions of speech such as the syllable nucleus. We propose an attention-based deep learning model that automatically de...

    Pełny tekst do pobrania w portalu

  • Deep neural networks for data analysis

    Kursy Online
    • K. Draszawka

    The aim of the course is to familiarize students with the methods of deep learning for advanced data analysis. Typical areas of application of these types of methods include: image classification, speech recognition and natural language understanding. Celem przedmiotu jest zapoznanie studentów z metodami głębokiego uczenia maszynowego na potrzeby zaawansowanej analizy danych. Do typowych obszarów zastosowań tego typu metod należą:...

  • Sathwik Prathapagiri

    Osoby

    Sathwik was born in 2000. In 2022, he completed his Master’s of Science in  Biological Sciences and Bachelor’s of Engineering in Chemical Engineering in an integrated dual degree program from Birla Institute Of Technology And Science, Pilani, India. During his final year, he worked as a research intern under Dr Giri P Krishnan at Bazhenov lab, University of California San Diego school of medicine to pursue his Master’s Thesis on...

  • Deep learning techniques for biometric security: A systematic review of presentation attack detection systems

    Publikacja

    - ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE - Rok 2024

    Biometric technology, including finger vein, fingerprint, iris, and face recognition, is widely used to enhance security in various devices. In the past decade, significant progress has been made in improving biometric sys- tems, thanks to advancements in deep convolutional neural networks (DCNN) and computer vision (CV), along with large-scale training datasets. However, these systems have become targets of various attacks, with...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Investigating Feature Spaces for Isolated Word Recognition

    Publikacja
    • P. Treigys
    • G. Korvel
    • G. Tamulevicius
    • J. Bernataviciene
    • B. Kostek

    - Rok 2020

    The study addresses the issues related to the appropriateness of a two-dimensional representation of speech signal for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and time-frequency signal representation converted to the investigated feature spaces. In particular, waveforms and fractal dimension features of the signal were chosen for the time domain, and...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • CNN-CLFFA: Support Mobile Edge Computing in Transportation Cyber Physical System

    Publikacja
    • A. Bhansali
    • R. Kumar Patra
    • P. Bidare Divakarachari
    • P. Falkowski-Gilski
    • G. Shivakanth
    • S. N. Patil

    - IEEE Access - Rok 2024

    In the present scenario, the transportation Cyber Physical System (CPS) improves the reliability and efficiency of the transportation systems by enhancing the interactions between the physical and cyber systems. With the provision of better storage ability and enhanced computing, cloud computing extends transportation CPS in Mobile Edge Computing (MEC). By inspecting the existing literatures, the cloud computing cannot fulfill...

    Pełny tekst do pobrania w portalu

  • Explainable machine learning for diffraction patterns

    Publikacja
    • S. Nawaz
    • V. Rahmani
    • D. Pennicard
    • S. P. R. Setty
    • B. Klaudel
    • H. Graafsma

    - Journal of Applied Crystallography - Rok 2023

    Serial crystallography experiments at X-ray free-electron laser facilities produce massive amounts of data but only a fraction of these data are useful for downstream analysis. Thus, it is essential to differentiate between acceptable and unacceptable data, generally known as ‘hit’ and ‘miss’, respectively. Image classification methods from artificial intelligence, or more specifically convolutional neural networks (CNNs), classify...

    Pełny tekst do pobrania w portalu

  • Interpretable deep learning approach for classification of breast cancer - a comparative analysis of multiple instance learning models

    Breast cancer is the most frequent female cancer. Its early diagnosis increases the chances of a complete cure for the patient. Suitably designed deep learning algorithms can be an excellent tool for quick screening analysis and support radiologists and oncologists in diagnosing breast cancer.The design of a deep learning-based system for automated breast cancer diagnosis is not easy due to the lack of annotated data, especially...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • How Integration of a Brain-Machine Interface and Obstacle Detection System Can Improve Wheelchair Control via Movement Image

    Publikacja
    • T. Kocejko
    • N. Matuszkiewicz
    • J. Kwiatkowski
    • P. Durawa
    • A. Madajczak

    - SENSORS - Rok 2024

    This study presents a human-computer interaction combined with a brain-machine interface (BMI) and obstacle detection system for remote control of a wheeled robot through movement imagery, providing a potential solution for individuals facing challenges with conventional vehicle operation. The primary focus of this work is the classification of surface EEG signals related to mental activity when envisioning movement and deep relaxation...

    Pełny tekst do pobrania w portalu

  • Data fusion of sparse, heterogeneous, and mobile sensor devices using adaptive distance attention

    Publikacja
    • J. Lepioufle
    • P. Schneider
    • P. D. Hamer
    • R. Odegard
    • I. Vallejo
    • T. Cao
    • A. Taherkordi
    • M. Wójcikowski

    - Environmental Data Science - Rok 2024

    In environmental science, where information from sensor devices are sparse, data fusion for mapping purposes is often based on geostatistical approaches. We propose a methodology called adaptive distance attention that enables us to fuse sparse, heterogeneous, and mobile sensor devices and predict values at locations with no previous measurement. The approach allows for automatically weighting the measurements according to a priori...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Pedestrian detection in low-resolution thermal images

    Over one million people die in car accidents worldwide each year. A solution that will be able to reduce situations in which pedestrian safety is at risk has been sought for a long time. One of the techniques for detecting pedestrians on the road is the use of artificial intelligence in connection with thermal imaging. The purpose of this work was to design a system to assist the safety of people and car intelligence with the use...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • A Bayesian regularization-backpropagation neural network model for peeling computations

    Publikacja
    • S. Gouravaraju
    • J. Narayan
    • R. Sauer
    • S. S. Gautam

    - JOURNAL OF ADHESION - Rok 2023

    A Bayesian regularization-backpropagation neural network (BRBPNN) model is employed to predict some aspects of the gecko spatula peeling, viz. the variation of the maximum normal and tangential pull-off forces and the resultant force angle at detachment with the peeling angle. K-fold cross validation is used to improve the effectiveness of the model. The input data is taken from finite element (FE) peeling results. The neural network...

    Pełny tekst do pobrania w portalu

  • Speech Analytics Based on Machine Learning

    In this chapter, the process of speech data preparation for machine learning is discussed in detail. Examples of speech analytics methods applied to phonemes and allophones are shown. Further, an approach to automatic phoneme recognition involving optimized parametrization and a classifier belonging to machine learning algorithms is discussed. Feature vectors are built on the basis of descriptors coming from the music information...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Neural Network Subgraphs Correlation with Trained Model Accuracy

    Publikacja

    - Rok 2020

    Neural Architecture Search (NAS) is a computationally demanding process of finding optimal neural network architecture for a given task. Conceptually, NAS comprises applying a search strategy on a predefined search space accompanied by a performance evaluation method. The design of search space alone is expected to substantially impact NAS efficiency. We consider neural networks as graphs and find a correlation between the presence...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Global Surrogate Modeling by Neural Network-Based Model Uncertainty

    Publikacja

    - Rok 2022

    This work proposes a novel adaptive global surrogate modeling algorithm which uses two neural networks, one for prediction and the other for the model uncertainty. Specifically, the algorithm proceeds in cycles and adaptively enhances the neural network-based surrogate model by selecting the next sampling points guided by an auxiliary neural network approximation of the spatial error. The proposed algorithm is tested numerically...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Neural network training with limited precision and asymmetric exponent

    Publikacja

    Along with an extremely increasing number of mobile devices, sensors and other smart utilities, an unprecedented growth of data can be observed in today’s world. In order to address multiple challenges facing the big data domain, machine learning techniques are often leveraged for data analysis, filtering and classification. Wide usage of artificial intelligence with large amounts of data creates growing demand not only for storage...

    Pełny tekst do pobrania w portalu

  • Computational Complexity and Its Influence on Predictive Capabilities of Machine Learning Models for Concrete Mix Design

    Publikacja

    - Materials - Rok 2023

    The design of concrete mixtures is crucial in concrete technology, aiming to produce concrete that meets specific quality and performance criteria. Modern standards require not only strength but also eco-friendliness and production efficiency. Based on the Three Equation Method, conventional mix design methods involve analytical and laboratory procedures but are insufficient for contemporary concrete technology, leading to overengineering...

    Pełny tekst do pobrania w portalu

  • Balanced Spider Monkey Optimization with Bi-LSTM for Sustainable Air Quality Prediction

    Publikacja

    - Sustainability - Rok 2023

    A reliable air quality prediction model is required for pollution control, human health monitoring, and sustainability. The existing air quality prediction models lack efficiency due to overfitting in prediction model and local optima trap in feature selection. This study proposes the Balanced Spider Monkey Optimization (BSMO) technique for effective feature selection to overcome the local optima trap and overfitting problems....

    Pełny tekst do pobrania w portalu

  • Improved Modeling of Microwave Structures Using Performance-Driven Fully-Connected Regression Surrogate

    Publikacja

    - IEEE Access - Rok 2021

    Fast replacement models (or surrogates) have been widely applied in the recent years to accelerate simulation-driven design procedures in microwave engineering. The fundamental reason is a considerable—and often prohibitive—CPU cost of massive full-wave electromagnetic (EM) analyses related to solving common tasks such as parametric optimization or uncertainty quantification. The most popular class of surrogates are data-driven...

    Pełny tekst do pobrania w portalu

  • Deep neural networks for data analysis 27/28

    Kursy Online
    • K. Draszawka

  • Deep neural networks for data analysis 25/26

    Kursy Online
    • K. Draszawka

  • Deep neural networks for data analysis 26/27

    Kursy Online
    • K. Draszawka

  • Neural Network World

    Czasopisma

    ISSN: 1210-0552

  • Investigating Feature Spaces for Isolated Word Recognition

    Publikacja

    - Rok 2018

    Much attention is given by researchers to the speech processing task in automatic speech recognition (ASR) over the past decades. The study addresses the issue related to the investigation of the appropriateness of a two-dimensional representation of speech feature spaces for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and timefrequency signal representation...

  • Controlling computer by lip gestures employing neural network

    Publikacja

    - Rok 2010

    Results of experiments regarding lip gesture recognition with an artificial neural network are discussed. The neural network module forms the core element of a multimodal human-computer interface called LipMouse. This solution allows a user to work on a computer using lip movements and gestures. A user face is detected in a video stream from a standard web camera using a cascade of boosted classifiers working with Haar-like features....

    Pełny tekst do pobrania w serwisie zewnętrznym

  • A Simple Neural Network for Collision Detection of Collaborative Robots

    Publikacja

    Due to the epidemic threat, more and more companies decide to automate their production lines. Given the lack of adequate security or space, in most cases, such companies cannot use classic production robots. The solution to this problem is the use of collaborative robots (cobots). However, the required equipment (force sensors) or alternative methods of detecting a threat to humans are usually quite expensive. The article presents...

    Pełny tekst do pobrania w portalu

  • Interpretable Deep Learning Model for the Detection and Reconstruction of Dysarthric Speech

    Publikacja
    • D. Korzekwa
    • R. Barra-Chicote
    • B. Kostek
    • T. Drugman
    • M. Łajszczak

    - Rok 2019

    We present a novel deep learning model for the detection and reconstruction of dysarthric speech. We train the model with a multi-task learning technique to jointly solve dysarthria detection and speech reconstruction tasks. The model key feature is a low-dimensional latent space that is meant to encode the properties of dysarthric speech. It is commonly believed that neural networks are black boxes that solve problems but do not...

    Pełny tekst do pobrania w portalu

  • Intelligent turbogenerator controller based on artifical neural network

    The paper presents a desing of an intelligent controller based on neural network (ICNN). The ICNN ensures at the same time two fundamental functions : the maintaining of generator voltage at the desired value and the damping of the electromechanical oscillations. Its performance is evaluted on a single machine infinite bus power system through computer simulations. The dynamic and transient operation of the proposed controller...

    Pełny tekst do pobrania w portalu

  • Electromagnetic Modeling of Microstrip Elements Aided with Artificial Neural Network

    Publikacja

    - Rok 2020

    The electromagnetic modeling principle aided withartificial neural network to designing the microwave widebandelements/networks prepared in microstrip technology is proposedin the paper. It is assumed that the complete information is knownfor the prototype design which is prepared on certain substratewith certain thickness and electric permittivity. The longitudinaland transversal dimensions of new design...

    Pełny tekst do pobrania w portalu

  • Optical Sensor Based Gestures Inference Using Recurrent Neural Network in Mobile Conditions

    In this paper the implementation of recurrent neural network models for hand gesture recognition on edge devices was performed. The models were trained with 27 hand gestures recorded with the use of a linear optical sensor consisting of 8 photodiodes and 4 LEDs. Different models, trained off-line, were tested in terms of different network topologies (different number of neurons and layers) and different effective sampling frequency...

  • Digits Recognition with Quadrant Photodiode and Convolutional Neural Network

    Publikacja

    - Rok 2018

    In this paper we have investigated the capabilities of a quadrant photodiode based gesture sensor in the recognition of digits drawn in the air. The sensor consisting of 4 active elements, 4 LEDs and a pinhole was considered as input interface for both discrete and continuous gestures. Index finger and a round pointer were used as navigating mediums for the sensor. Experiments performed with 5 volunteers...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • An automatic selection of optimal recurrent neural network architecture for processes dynamics modelling purposes

    A problem related to the development of algorithms designed to find the structure of artificial neural network used for behavioural (black-box) modelling of selected dynamic processes has been addressed in this paper. The research has included four original proposals of algorithms dedicated to neural network architecture search. Algorithms have been based on well-known optimisation techniques such as evolutionary algorithms and...

    Pełny tekst do pobrania w portalu

  • Data Acquisition and Processing for GeoAI Models to Support Sustainable Agricultural Practices

    Publikacja
    • A. G. Pereira
    • A. Ojo
    • C. Edward
    • L. Porwol

    - Rok 2020

    There are growing opportunities to leverage new technologies and data sources to address global problems related to sustainability, climate change, and biodiversity loss. The emerging discipline of GeoAI resulting from the convergence of AI and Geospatial science (Geo-AI) is enabling the possibility to harness the increasingly available open Earth Observation data collected from different constellations of satellites and sensors...

    Pełny tekst do pobrania w portalu

  • Evolving neural network as a decision support system — Controller for a game of “2048” case study

    Publikacja

    The paper proposes an approach to designing the neuro-genetic self-learning decision support system. The system is based on neural networks being adaptively learned by evolutionary mechanism, forming an evolved neural network. Presented learning algorithm enables for a selection of the neural network structure by establishing or removing of connections between the neurons, and then for a finding the beast suited values of the network...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Artificial Neural Network in Forecasting the Churn Phenomena Among Costumers of IT and Power Supply Services

    Publikacja

    This paper presents an attempt to use an artificial neural network to investigate the churn phenomenon among the customers of a telecommunications operator. An attempt was made to create a data model based on the customer lifetime value (CLV) rather than on activity alone. A multilayered artificial neural network was used for the experiments. The results yielded a 99% successful identification rate for customers in no danger of...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Machine Learning and Deep Learning Methods for Fast and Accurate Assessment of Transthoracic Echocardiogram Image Quality

    Publikacja
    • W. Nazar
    • K. Nazar
    • L. Daniłowicz-Szymanowicz

    - Life - Rok 2024

    High-quality echocardiogram images are the cornerstone of accurate and reliable measurements of the heart. Therefore, this study aimed to develop, validate and compare machine learning and deep learning algorithms for accurate and automated assessment of transthoracic echocardiogram image quality. In total, 4090 single-frame two-dimensional transthoracic echocardiogram...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • A Comprehensive Analysis of Deep Neural-Based Cerebral Microbleeds Detection System

    Publikacja

    - Electronics - Rok 2021

    Machine learning-based systems are gaining interest in the field of medicine, mostly in medical imaging and diagnosis. In this paper, we address the problem of automatic cerebral microbleeds (CMB) detection in magnetic resonance images. It is challenging due to difficulty in distinguishing a true CMB from its mimics, however, if successfully solved it would streamline the radiologists work. To deal with this complex three-dimensional...

    Pełny tekst do pobrania w portalu

  • Diagnosing wind turbine condition employing a neural network to the analysis of vibroacoustic signals

    It is important from the economic point of view to detect damage early in the wind turbines before failures occur. For this purpose, a monitoring device was built that analyzes both acoustic signals acquired from the built-in non-contact acoustic intensity probe, as well as from the accelerometers, mounted on the internal devices in the nacelle. The signals collected in this way are used for long-term training of the autoencoder...

    Pełny tekst do pobrania w portalu

  • EPILEPTIC BEHAVIOR WITH A DISTINGUISHED PREICTAL PERIOD IN A LARGE-SCALE NEURAL NETWORK MODEL

    Publikacja

    - EPILEPSIA - Rok 2009

    We present a neural network model capable of reproducing focal epileptic behavior. An important property of our model is the distinguished preictal state. This novel feature may shed light on the pathologi-cal mechanisms of seizure generation and, in perspective, help develop new therapeutic strategies to manage refractory partial epilepsy.

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Playback detection using machine learning with spectrogram features approach

    Publikacja

    This paper presents 2D image processing approach to playback detection in automatic speaker verification (ASV) systems using spectrograms as speech signal representation. Three feature extraction and classification methods: histograms of oriented gradients (HOG) with support vector machines (SVM), HAAR wavelets with AdaBoost classifier and deep convolutional neural networks (CNN) were compared on different data partitions in respect...

    Pełny tekst do pobrania w portalu

  • TOXIC GASES IDENTIFICATION USING SINGLE ELECTROCATALYTIC SENSOR RESPONSES AND ARTIFICIAL NEURAL NETWORK

    The need for precise detection of toxic gases drives development of new gas sensors structures and methods of processing the output signals from the sensors. In literature, artificial neural networks are considered as one of the most effective tool for the analysis of gas sensors or sensors arrays responses. In this paper a method of toxic gas components identification using a electrocatalytic gas sensor as a detector and an artificial...

  • NETWORK-COMPUTATION IN NEURAL SYSTEMS

    Czasopisma

    ISSN: 0954-898X , eISSN: 1361-6536

  • Artificial neural network prophecy of ion exchange process for Cu (II) eradication from acid mine drainage

    Publikacja
    • V. S. Hakke
    • R. W. Gaikwad
    • A. R. Warade
    • S. H. Sonawane
    • G. Boczkaj
    • S. Sonawane
    • V. S. Sapkal

    - International Journal of Environmental Science and Technology - Rok 2023

    The removal of heavy metal ions from wastewater was found to be significant when the cation exchange procedure was used effectively. The model of the cation exchange process was built using an artificial neural network (ANN). The acid mine drainage waste’s Cu(II) ion was removed using Indion 730 cation exchange resin. Experimental data from 252 cycles were recorded. In a column study, 252 experimental observations validated the...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Emotion Recognition from Physiological Channels Using Graph Neural Network

    In recent years, a number of new research papers have emerged on the application of neural networks in affective computing. One of the newest trends observed is the utilization of graph neural networks (GNNs) to recognize emotions. The study presented in the paper follows this trend. Within the work, GraphSleepNet (a GNN for classifying the stages of sleep) was adjusted for emotion recognition and validated for this purpose. The...

    Pełny tekst do pobrania w portalu

  • Big Data from Sensor Network via Internet of Things to Edge Deep Learning for Smart City

    Publikacja

    - Rok 2021

    Data from a physical world is sampled by sensor networks, and then streams of Big Data are sent to cloud hosts to support decision making by deep learning software. In a smart city, some tasks may be assigned to smart devices of the Internet of Things for performing edge computing. Besides, a part of workload of calculations can be transferred to the cloud hosts. This paper proposes benchmarks for division tasks between an edge...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Model-Based Adaptive Machine Learning Approach in Concrete Mix Design

    Publikacja

    Concrete mix design is one of the most critical issues in concrete technology. This process aims to create a concrete mix which helps deliver concrete with desired features and quality. Contemporary requirements for concrete concern not only its structural properties, but also increasingly its production process and environmental friendliness, forcing concrete producers to use both chemically and technologically complex concrete...

    Pełny tekst do pobrania w portalu

  • Comparison of single best artificial neural network and neural network ensemble in modeling of palladium microextraction

    Publikacja

    - MONATSHEFTE FUR CHEMIE - Rok 2015

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Performance Analysis of the OpenCL Environment on Mobile Platforms

    Publikacja

    Today’s smartphones have more and more features that so far were only assigned to personal computers. Every year these devices are composed of better and more efficient components. Everything indicates that modern smartphones are replacing ordinary computers in various activities. High computing power is required for tasks such as image processing, speech recognition and object detection. This paper analyses the performance of...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Improving Accuracy of Respiratory Rate Estimation by Restoring High Resolution Features With Transformers and Recursive Convolutional Models

    Publikacja

    - Rok 2021

    Non-contact evaluation of vital signs has been becoming increasingly important, especially in light of the COVID- 19 pandemic, which is causing the whole world to examine people’s interactions in public places at a scale never seen before. However, evaluating one’s vital signs can be a relatively complex procedure, which requires both time and physical contact between examiner and examinee. These re- quirements limit the number...

    Pełny tekst do pobrania w portalu

  • Neural network based algorithm for hand gesture detection in a low-cost microprocessor applications

    In this paper the simple architecture of neural network for hand gesture classification was presented. The network classifies the previously calculated parameters of EMG signals. The main goal of this project was to develop simple solution that is not computationally complex and can be implemented on microprocessors in low-cost 3D printed prosthetic arms. As the part of conducted research the data set EMG signals corresponding...

    Pełny tekst do pobrania w serwisie zewnętrznym