Filtry
wszystkich: 1860
-
Katalog
- Publikacje 1422 wyników po odfiltrowaniu
- Czasopisma 184 wyników po odfiltrowaniu
- Konferencje 26 wyników po odfiltrowaniu
- Osoby 63 wyników po odfiltrowaniu
- Projekty 10 wyników po odfiltrowaniu
- Kursy Online 70 wyników po odfiltrowaniu
- Wydarzenia 10 wyników po odfiltrowaniu
- Dane Badawcze 75 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: deep reinforcement learning
-
Deep Learning w Keras
Kursy OnlineKurs przeznaczony dla słuchaczy studiów podyplomowych Sztuczna inteligencja i automatyzacja procesów biznesowych w ujęciu praktycznym - edycja biznesowa.
-
IEEE International Symposium on Adaptive Dynamic Programming and Reinforcement Learning
Konferencje -
Deep Learning Basics 2023/24
Kursy OnlineA course about the basics of deep learning intended for students of Computer Science. It includes an introduction to supervised machine learning, the architecture of basic artificial neural networks and their training algorithms, as well as more advanced architectures (convolutional networks, recurrent networks, transformers) and regularization and optimization techniques.
-
Basics of Deep Learning 24/25
Kursy Online -
Designing acoustic scattering elements using machine learning methods
PublikacjaIn the process of the design and correction of room acoustic properties, it is often necessary to select the appropriate type of acoustic treatment devices and make decisions regarding their size, geometry, and location of the devices inside the room under the treatment process. The goal of this doctoral dissertation is to develop and validate a mathematical model that allows predicting the effects of the application of the scattering...
-
Olgun Aydin dr
OsobyOlgun Aydin finished his PhD by publishing a thesis about Deep Neural Networks. He works as a Principal Machine Learning Engineer in Nike, and works as Assistant Professor in Gdansk University of Technology in Poland. Dr. Aydin is part of editorial board of "Journal of Artificial Intelligence and Data Science" Dr. Aydin served as Vice-Chairman of Why R? Foundation and is member of Polish Artificial Intelligence Society. Olgun is...
-
Experimental tests of reinforced concrete deep-beams
PublikacjaThe paper presents results of experimental research of the reinforced concrete deep beam with a spatial arrangement. Tested structural elements consist of the cantilever deep beam loaded on the height and transverse deep beam with hanging on it another one. The analysis includes crack morphology, effort of steel and load distribution. The article verified effectiveness of two different kind of reinforcement in both tested deep...
-
Deep neural networks for data analysis 24/25
Kursy OnlineThis course covers introduction to supervised machine learning, construction of basic artificial deep neural networks (DNNs) and basic training algorithms, as well as the overview of popular DNNs architectures (convolutional networks, recurrent networks, transformers). The course introduces students to popular regularization techniques for deep models. Besides theory, large part of the course is the project in which students apply...
-
Integracja bezprzewodowych heterogenicznych sieci IP dla poprawy efektywności transmisji danych na morzu
PublikacjaWraz ze wzrostem istotności środowiska morskiego w naszym codziennym życiu np. w postaci zwiększonego wolumenu transportu realizowanego drogą morską. czy zintensyfikowanych prac dotyczących obserwacji i monitoringu środowiska morskiego, wzrasta również potrzeba opracowania efektywnych systemów komunikacyjnych dedykowanych dla tego środowiska. Heterogeniczne systemy łączności bezprzewodowej integrowane na poziomie warstwy sieciowej...
-
Wpływ ukształtowania zbrojenia na zarysowanie i nośność żelbetowego węzła tarczowego ze wspornikiem
PublikacjaPraca ma charakter eksperymentalno-teoretyczny i dotyczy zagadnień związanych z żelbetowymi tarczami pracującymi w przestrzennym układzie konstrukcji budynków. Celem niniejszej dysertacji było określenie wpływu głównych parametrów jakimi są sposób ukształtowania zbrojenia i smukłość ścinania na zarysowanie i nośność żelbetowego przestrzennego węzła tarczowego ze wspornikiem. Na podstawie aktualnego stanu wiedzy, opracowano program...
-
Hossein Nejatbakhsh Esfahani Dr.
OsobyMy research interests lie primarily in the area of Learning-based Safety-Critical Control Systems, for which I leverage the following concepts and tools:-Robust/Optimal Control-Reinforcement Learning-Model Predictive Control-Data-Driven Control-Control Barrier Function-Risk-Averse Controland with applications to:-Aerial and Marine robotics (fixed-wing UAVs, autonomous ships and underwater vehicles)-Multi-Robot and Networked Control...
-
Deep neural networks for data analysis
Kursy OnlineThe aim of the course is to familiarize students with the methods of deep learning for advanced data analysis. Typical areas of application of these types of methods include: image classification, speech recognition and natural language understanding. Celem przedmiotu jest zapoznanie studentów z metodami głębokiego uczenia maszynowego na potrzeby zaawansowanej analizy danych. Do typowych obszarów zastosowań tego typu metod należą:...
-
Olgun Aydin Dr
OsobyOlgun Aydin finished his PhD by publishing a thesis about Deep Neural Networks. He works as a Senior Data Scientist in PwC Poland, gives lectures in Gdansk University of Technology in Poland and member of WhyR? Foundation. Olgun is a very big fan of R and author of the book called “R Web Scraping Quick Start Guide” , two video courses are called “Deep Dive into Statistical Modelling using R” and “Applied Machine Learning and Deep...
-
Podstawy uczenia głębokiego 2022
Kursy Online{mlang pl}Kurs podstaw uczenia głębokiego przeznaczony dla studentów kierunku Informatyka.{mlang} {mlang en}This is a course about deep learning basics dedicated for Computer Science students.{mlang}
-
Agnieszka Mikołajczyk-Bareła dr inż.
Osoby -
Efkleidis Katsaros
OsobyEfklidis Katsaros received the B.Sc. degree in mathematics from the Aristotle University of Thessaloniki, Greece, in 2016, and the M.Sc. degree (cum laude) in data science: statistical science from Leiden University, The Netherlands, in 2019. He is currently pursuing the Ph.D. degree in deep video multi-task learning with the Department of Biomedical Engineering, Gdańsk University of Technology, Poland. Since 2020, he has been...
-
Jacek Rumiński prof. dr hab. inż.
OsobyWykształcenie i kariera zawodowa 2022 2016 2002 1995 1991-1995 Tytuł profesora Habilitacja Doktor nauk technicznych Magister inżynier Prezydent RP, dziedzina nauk inżynieryjno-technicznych, dyscyplina: inzyniera biomedyczna Politechnika Gdańska, Biocybernetyka i inżyniera biomedyczna, tematyka: „Metody wyodrębniania sygnałów i parametrów z różnomodalnych sekwencji obrazów dla potrzeb diagnostyki i wspomagania...
-
Abdalraheem Ijjeh Ph.D. Eng.
OsobyThe primary research areas of interest are artificial intelligence (AI), machine learning, deep learning, and computer vision, as well as modeling physical phenomena (i.e., guided waves in composite laminates). The research interests described above are utilized for SHM and NDE applications, namely damage detection and localization in composite materials.
-
SegSperm - a dataset of sperm images for blurry and small object segmentation
Dane BadawczeMany deep learning applications require figure-ground segmentation. The performance of segmentation models varies across modalities and acquisition settings.
-
Muhammad Usman PhD
OsobyMuhammad Usman is currently a Computer Vision Researcher at Gdansk University of Technology, working on the BE-LIGHT project, where his research focuses on advancing biomedical diagnostics through the integration of light-based technologies and machine learning techniques. He has completed his Master’s degree in Control Science and Engineering from the University of Science and Technology of China (USTC), Hefei, China. His research...
-
WYKORZYSTANIE SIECI NEURONOWYCH DO SYNTEZY MOWY WYRAŻAJĄCEJ EMOCJE
PublikacjaW niniejszym artykule przedstawiono analizę rozwiązań do rozpoznawania emocji opartych na mowie i możliwości ich wykorzystania w syntezie mowy z emocjami, wykorzystując do tego celu sieci neuronowe. Przedstawiono aktualne rozwiązania dotyczące rozpoznawania emocji w mowie i metod syntezy mowy za pomocą sieci neuronowych. Obecnie obserwuje się znaczny wzrost zainteresowania i wykorzystania uczenia głębokiego w aplikacjach związanych...
-
Optymalizacja zasobów chmury obliczeniowej z wykorzystaniem inteligentnych agentów w zdalnym nauczaniu
PublikacjaRozprawa dotyczy optymalizacji zasobów chmury obliczeniowej, w której zastosowano inteligentne agenty w zdalnym nauczaniu. Zagadnienie jest istotne w edukacji, gdzie wykorzystuje się nowoczesne technologie, takie jak Internet Rzeczy, rozszerzoną i wirtualną rzeczywistość oraz deep learning w środowisku chmury obliczeniowej. Zagadnienie jest istotne również w sytuacji, gdy pandemia wymusza stosowanie zdalnego nauczania na dużą skalę...
-
Muhammad Usman PhD
OsobyMuhammad Usman is a researcher at the Gdansk University of Technology, currently working on the BE-Light project focused on face skin analysis using multimodal imaging and machine learning methods. He previously worked as a Hardware Test Engineer at Apple Inc., specializing in the rigorous testing and validation of electronic systems, ensuring reliability and performance. He holds a Master of Science in Automation and Control from...
-
Międzynarodowa Szkoła Letnia na temat algorytmów
WydarzeniaKatedra Algorytmów i Modelowania Systemów WETI PG organizuje 4. edycję Międzynarodowej Szkoły Letniej na temat algorytmów dla problemów optymalizacji dyskretnej i głębokiego uczenia
-
Poprawa jakości klasyfikacji głębokich sieci neuronowych poprzez optymalizację ich struktury i dwuetapowy proces uczenia
PublikacjaW pracy doktorskiej podjęto problem realizacji algorytmów głębokiego uczenia w warunkach deficytu danych uczących. Głównym celem było opracowanie podejścia optymalizującego strukturę sieci neuronowej oraz zastosowanie uczeniu dwuetapowym, w celu uzyskania mniejszych struktur, zachowując przy tym dokładności. Proponowane rozwiązania poddano testom na zadaniu klasyfikacji znamion skórnych na znamiona złośliwe i łagodne. W pierwszym...
-
Textile reinforced concrete members subjected to tension, bending, and in-plane loads: Experimental study and numerical analyses
PublikacjaTextile reinforced concrete has raised increasing research interest during the last years, mainly due to its potential to be used for freeform shell structures involving complex load situations. Yet, most experimental work has focused on test setups with primarily uniaxial loading. In the current work, such setups are complemented with a novel test setup of deep beams, including in-plane bending and shear. Further, nonlinear finite...
-
Koncepcja systemu wspomagania decyzji nawigatora statku opartego na ewolucyjnym planowaniu manewrów antykolizyjnych
PublikacjaArtykuł przedstawia koncepcję systemu wspomagania decyzji nawigatora statku opartego na wątkach badań prowadzonych wcześniej przez autora. System będzie rozszerzał funkcjonalność systemów dotychczasowych o możliwość szczegółowego planowania bezpiecznej trajektorii statku na wodach zamkniętych, z dużą liczbą statków obcych i ograniczeniami toru wodnego. Artykuł zawiera dyskusję możliwych podejść do planowania manewrów, optymalizacji...
-
Akustyczna analiza parametrów ruchu drogowego z wykorzystaniem informacji o hałasie oraz uczenia maszynowego
PublikacjaCelem rozprawy było opracowanie akustycznej metody analizy parametrów ruchu drogowego. Zasada działania akustycznej analizy ruchu drogowego zapewnia pasywną metodę monitorowania natężenia ruchu. W pracy przedstawiono wybrane metody uczenia maszynowego w kontekście analizy dźwięku (ang.Machine Hearing). Przedstawiono metodologię klasyfikacji zdarzeń w ruchu drogowym z wykorzystaniem uczenia maszynowego. Przybliżono podstawowe...
-
Distortion of speech signals in the listening area: its mechanism and measurements
PublikacjaThe paper deals with a problem of the influence of the number and distribution of loudspeakers in speech reinforcement systems on the quality of publicly addressed voice messages, namely on speech intelligibility in the listening area. Linear superposition of time-shifted broadband waves of a same form and slightly different magnitudes that reach a listener from numerous coherent sources, is accompanied by interference effects...
-
Damage of a post-tensioned concrete bridge – Unwanted cracks of the girders
PublikacjaThe cracking of a post-tensioned T-beam superstructure, which was built using the incremental launching method, is analyzed in the paper. The problem is studied in detail, as specific damage was observed in the form of longitudinal cracks, especially in the mid-height zone of the girder at the interface of two assembly sections. The paper is a case study. A detailed inspection is done and non-destructive testing results of the...
-
Sathwik Prathapagiri
OsobySathwik was born in 2000. In 2022, he completed his Master’s of Science in Biological Sciences and Bachelor’s of Engineering in Chemical Engineering in an integrated dual degree program from Birla Institute Of Technology And Science, Pilani, India. During his final year, he worked as a research intern under Dr Giri P Krishnan at Bazhenov lab, University of California San Diego school of medicine to pursue his Master’s Thesis on...
-
A note on total reinforcement in graphs
PublikacjaIn this note we prove a conjecture and inprove some results presendet in a recent paper of N. Sridharan, M.D. Elias, V.S.A. Subramanian, Total reinforcement number of a graph, AKCE Int. J. Graphs Comb. 4 (2) (2007) 197-202.
-
Mohsan Ali Master of Science in Computer Science
OsobyMohsan Ali is a researcher at the University of the Aegean. He won the Marie-Curie Scholarship in 2021 in the field of open data ecosystem (ODECO) to pursue his PhD degree at the University of the Aegean. Currently, he is working on the technical interoperability of open data in the information systems laboratory; this position is funded by ODECO. His areas of expertise are open data, open data interoperability, data science, natural...
-
Narzędzia i metody obliczeń z użyciem MATLABa
WydarzeniaDn. 19.03.2020 w godz. 10.00–13.15 na Politechnice Gdańskiej odbędzie się seminarium w języku angielskim poświęcone wykorzystaniu MATLABa w badaniach naukowych i dydaktyce.
-
Alternative way of the main reinforcement anchorage in reinforced short cantilevers
PublikacjaThe results of the experimental investigation of the reinforced corbels and dapped end beams with steel studs were introduced in the work. The efficiency of this type of the reinforcement was compared with the typical reinforcenet applied in reinforced conctrete construcions.
-
E-learning courses
Kursy OnlineStrona zawiera zbiór kursów prowadzonych metodą e-learning. Kursy te są skierowane do studentów I stopnia kierunku informatyka na VII semestrze profilu Bazy danych, do studentów na kierunku informatyka na II semestrze studiów II stopnia na specjalności ZAD i ISI.
-
Machine learning for PhD students
Kursy OnlineAn introductory course in machine learning for PhD students from Department of Geotechnical and Hydraulic Engineering
-
Federated Learning in Healthcare Industry: Mammography Case Study
PublikacjaThe paper focuses on the role of federated learning in a healthcare environment. The experimental setup involved different healthcare providers, each with their datasets. A comparison was made between training a deep learning model using traditional methods, where all the data is stored in one place, and using federated learning, where the data is distributed among the workers. The experiment aimed to identify possible challenges...
-
e-Learning - user's guide for students
Kursy Onlinee-Learning - user's guide for students
-
Influence of effective width of flange on calculation and reinforcement dimensioning of beam of reinforced concrete frame
PublikacjaThe paper analyses the influence of modelling the cross-section of a beam in two-storey reinforced concrete frame of industrial warehouse with dimensions: 18.0 m × 32.0 m using bar elements on the results of bending moments, the value of elastic deflection and the dimensioning of reinforcement due to bending. Six options were considered: a beam as a rectangular section and five T-beam variants with different definitions of effective...
-
Assessing the attractiveness of human face based on machine learning
PublikacjaThe attractiveness of the face plays an important role in everyday life, especially in the modern world where social media and the Internet surround us. In this study, an attempt to assess the attractiveness of a face by machine learning is shown. Attractiveness is determined by three deep models whose sum of predictions is the final score. Two annotated datasets available in the literature are employed for training and testing...
-
Lifelong Learning Idea in Architectural Education
PublikacjaThe recent advances in IT and technology are forcing changes in the approach to educating society. In the 20th century, life-long learning was understood as educating adults in order to improve their occupational qualifications. Life-long learning allows the needs of the present-day world to be addressed through providing the individual with education at every stage of his/her life various forms. The search for a new model...
-
Self-Supervised Learning to Increase the Performance of Skin Lesion Classification
PublikacjaTo successfully train a deep neural network, a large amount of human-labeled data is required. Unfortunately, in many areas, collecting and labeling data is a difficult and tedious task. Several ways have been developed to mitigate the problem associated with the shortage of data, the most common of which is transfer learning. However, in many cases, the use of transfer learning as the only remedy is insufficient. In this study,...
-
Benchmarking Deep Neural Network Training Using Multi- and Many-Core Processors
PublikacjaIn the paper we provide thorough benchmarking of deep neural network (DNN) training on modern multi- and many-core Intel processors in order to assess performance differences for various deep learning as well as parallel computing parameters. We present performance of DNN training for Alexnet, Googlenet, Googlenet_v2 as well as Resnet_50 for various engines used by the deep learning framework, for various batch sizes. Furthermore,...
-
Basic sensitivity analysis of a telecommunication tower complementing standard reinforcement design process
PublikacjaThis paper presents straightforward sensitivity assessment of a telecommunication tower. The analysis is set toidentify the elements of the tower which may be reinforced with the greatest structural advantage. As current expertopin ions on structural redesign of similar structures due to a planned addition of extra loads are mainly based ondeterministic computations or engineering intuition,...
-
Knowledge sharing and knowledge hiding in light of the mistakes acceptance component of learning culture- knowledge culture and human capital implications
PublikacjaPurpose: This study examines the micromechanisms of how knowledge culture fosters human capital development. Method: An empirical model was developed using the structural equation modeling method (SEM) based on a sample of 321 Polish knowledge workers employed in different industries. Findings: This study provides direct empirical evidence that tacit knowledge sharing supports human capital, whereas tacit knowledge hiding does...
-
A Comparison of STI Measured by Direct and Indirect Methods for Interiors Coupled with Sound Reinforcement Systems
PublikacjaThis paper presents a comparison of STI (Speech Transmission Index) coefficient measurement results carried out by direct and indirect methods. First, acoustic parameters important in the context of public address and sound reinforcement systems are recalled. A measurement methodology is presented that employs various test signals to determine impulse responses. The process of evaluating sound system performance, signals enabling...
-
Selected Technical Issues of Deep Neural Networks for Image Classification Purposes
PublikacjaIn recent years, deep learning and especially Deep Neural Networks (DNN) have obtained amazing performance on a variety of problems, in particular in classification or pattern recognition. Among many kinds of DNNs, the Convolutional Neural Networks (CNN) are most commonly used. However, due to their complexity, there are many problems related but not limited to optimizing network parameters, avoiding overfitting and ensuring good...
-
Speech Analytics Based on Machine Learning
PublikacjaIn this chapter, the process of speech data preparation for machine learning is discussed in detail. Examples of speech analytics methods applied to phonemes and allophones are shown. Further, an approach to automatic phoneme recognition involving optimized parametrization and a classifier belonging to machine learning algorithms is discussed. Feature vectors are built on the basis of descriptors coming from the music information...
-
MANAGING LEARNING PROCESS WITH E-LEARNING TOOL
PublikacjaThis article presents one possibility to employ Moodle, the free e-Leaning platform, to organize learning understood as a process. Behavioral approach and application to massive courses are assumed. A case study is presented, where the introduction of Moodle resulted in better student performance in homework