Filtry
wszystkich: 1586
-
Katalog
- Publikacje 1344 wyników po odfiltrowaniu
- Czasopisma 25 wyników po odfiltrowaniu
- Konferencje 11 wyników po odfiltrowaniu
- Wydawnictwa 1 wyników po odfiltrowaniu
- Osoby 35 wyników po odfiltrowaniu
- Projekty 5 wyników po odfiltrowaniu
- Kursy Online 3 wyników po odfiltrowaniu
- Dane Badawcze 162 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: MICROWAVE PLANAR SENSOR
-
Planar Microwave Bragg Reflector Resonant Dielectric Sensor
PublikacjaIn this paper, a periodic structure is used to design a microwave Bragg reflector with the help of hexagonal lattice, which provides a 5 GHz wide stopband between the low-pass band with cut-off frequency 2.6 GHz and the bandpass response with start and stop frequency 7.8 GHz and 10.5 GHz, respectively. A defect in lattice allows passing a narrowband signal at 6 GHz which is found, from the dispersion relation, to be in the region...
-
A Highly Sensitive Planar Microwave Sensor for Detecting Direction and Angle of Rotation
PublikacjaThis article presents a technique based on a modified complementary split-ring resonator (CSRR) to detect angular displacement and direction of rotation with high resolution and sensitivity over a wide dynamic range. The proposed microwave planar sensor takes advantage of the asymmetry of the sensor geometry and measures the angle of rotation in terms of the change in the relative phase of the reflection coefficients. The sensor...
-
Automated microwave planar filter design with generalized Chebyshev characteristics.
PublikacjaIn this paper a technique of automatization of design of microwave filters with generalized Chebyshev characteristics is presented. A full wave electromagnetic simulator linked with the Matlab computing environment is used to ensure a rigorous numerical analysis while at the same time allowing automatization. To decrease time of optimization and overall design process, the Cauchy interpolation technique was used. An automated design...
-
Near Field Coupled Wireless Microwave Sensor
PublikacjaThis paper presents a wireless planar microwave sensor operating at industrial scientific and medical (ISM) frequency for the detection of dielectric materials. The microwave sensor consists of a reader (ground defected microstrip coupled line) and a passive tag where a complementary split-ring resonator (CSRR) is made on the commercially available copper-foil. The CSRR is a peel-off type tag that is excited using the near field...
-
Design of Microwave-Based Angular Displacement Sensor
PublikacjaThis letter presents a novel microwave-based rotation sensor having a wide dynamic range to detect and measure the angular displacement in terms of the change in resonant frequency. The proposed sensor is based on the microstrip technology, where a rotor comprised of a complementary splitring resonator (CSRR) placed on the ground plane of the microstrip line is free to rotate around its axis. The mechanical rotation of CSRR determines...
-
Microwave Ring Resonator Based Pressure Sensor
PublikacjaThis paper demonstrates a microwave pressure sensor, which is based on microstrip line-fed ring resonators. The first ring resonator is loaded with the concentric cylindrical shafts, while the same number of the hollow shanks as the shafts are mounted on the second ring resonator. The arrangement of the cylindrical shaft and hollow shank allows for mechanical movement between two substrates while maintaining electrical contact....
-
An automated microwave planar filter design based on space mapping optimization
Publikacja -
Novel MNZ-type microwave sensor for testing magnetodielectric materials
PublikacjaA novel microwave sensor with the mu-near-zero (MNZ) property is proposed for testing magnetodielectric material at 4.5 GHz. The sensor has a double-layer design consisting of a microstrip line and a metal strip with vias on layers 1 and 2, respectively. The proposed sensor can detect a unit change in relative permittivity and relative permeability with a difference in the operating frequency of 45 MHz and 78 MHz, respectively....
-
A Compact and Lightweight Microwave Tilt Sensor Based on an SRR-Loaded Microstrip Line
PublikacjaIn this paper, the symmetry property of split ring resonators (SRRs) is exploited to develop a tilt sensor. The sensor is composed of an SRR-loaded microstrip line operating at microwave frequencies. It is shown that the depth of notch in the reflection characteristic of the microstrip is a function of the tilt angle of the SRR. Thus, it can be used for sensing inclination. The sensor benefits from very compact size and light weight....
-
A Microwave Sensor with Operating Band Selection to Detect Rotation and Proximity in the Rapid Prototyping Industry
PublikacjaThis paper presents a novel sensor for detecting and measuring angular rotation and proximity, intended for rapid prototyping machines. The sensor is based on a complementary split-ring resonator (CSRR) driven by a conductor-backed coplanar waveguide. The sensor has a planar topology, which makes it simple and cost-effective to produce and accurate in measuring both physical quantities. The sensor has two components, a rotor, and...
-
An NO2 sensor based on WO3 thin films for automotive applications in the microwave frequency range
PublikacjaA microwave system dedicated to the detection of nitrogen dioxide in the harsh environment of the Norway highways is proposed. An optimized transmission line type of sensor coated with a tungsten trioxide thin film that changes its electrical properties under NO2 gas exposure is developed. The sensors' response (S) is given in °/GHz and it is calculated based on wideband measurements. The advantage of wideband measurements in comparison...
-
A Multifunctional Microwave Filter/Sensor Component Using a Split Ring Resonator Loaded Transmission Line
PublikacjaThis research is focused on the design and realiza2 tion of a microwave component with multifunctional filter/sensor 3 operation using a resonator-loaded transmission line (TL). It is 4 shown that while the structure acts as a bandstop filter, the 5 phase of the reflection coefficient from the loading resonator(s) 6 on a movable layer can be used for displacement sensing, thus 7 allowing for combining filtering with sensing in...
-
Comparing traffic intensity estimates employing passive acoustic radar and microwave Doppler radar sensor
PublikacjaThe purpose of our applied research project is to develop an autonomous road sign with built-in radar devices of our design. In this paper, we show that it is possible to calibrate the acoustic vector sensor so that it can be used to measure traffic volume and count the vehicles involved in the traffic through the analysis of the noise emitted by them. Signals obtained from a Doppler radar are used as a reference source. Although...
-
Estimating Traffic Intensity Employing Passive Acoustic Radar and Enhanced Microwave Doppler Radar Sensor
PublikacjaInnovative road signs that can autonomously display the speed limit in cases where the trac situation requires it are under development. The autonomous road sign contains many types of sensors, of which the subject of interest in this article is the Doppler sensor that we have improved and the constructed and calibrated acoustic probe. An algorithm for performing vehicle detection and tracking, as well as vehicle speed measurement,...
-
Design and Experimental Validation of a Metamaterial-Based Sensor for Microwave Imaging in Breast, Lung, and Brain Cancer Detection
PublikacjaThis study proposes an innovative geometry of a microstrip sensor for high-resolution microwave imaging (MWI). The main intended application of the sensor is early detection of breast, lung, and brain cancer. The proposed design consists of a microstrip patch antenna fed by a coplanar waveguide with a metamaterial layer-based lens implemented on the back side, and an artificial magnetic conductor (AMC) realized on as a separate...
-
Design of novel highly sensitive sensors for crack detection in metal surfaces: theoretical foundation and experimental validation
PublikacjaThe application of different types of microwave resonators for sensing cracks in metallic structures has been subject of many studies. While most studies have been focused on improving the sensitivity of planar crack sensors, the theoretical foundation of the topic has not been treated in much detail. The major objective of this study is to perform an exhaustive study of the principles and theoretical foundations for crack sensing...
-
Near-Field Wireless Sensing of Plastics and Papers Using Frugal Peel-Off Passive Tag
PublikacjaThis article presents a novel frugal approach of testing plastics and papers using a near-field microwave sensing technique with a peel-off tag. The proposed sensing technique involves two electrical entities: the sensor, which may be regarded as a reader, and a disposable tag. The reader is a modified design of a gap-coupled microstrip line (GCML) sensor, while the passive tag is a standard double-ring complementary split-ring...
-
Krzysztof Nyka dr hab. inż.
OsobyKrzysztof Nyka, absolwent Wydziału Elektroniki Telekomunikacji i Informatyki Politechniki Gdańskiej (WETI PG), gdzie uzyskał tytuł magistra inżyniera (1986, telekomunikacja) stopień doktora nauk technicznych (2002, elektronika) i doktora habilitowanego (2020 automatyka, elektronika i elektrotechnika). Obecnie jest zatrudniony na stanowisku profesora uczelni w Katedrze Inżynierii Mikrofalowej i Antenowej WETI PG. Zainteresowania...
-
Microwave Alignment and Displacement Sensors in Groove Gap Waveguide Technology
PublikacjaThis paper is aimed at presenting highly sensitive microwave displacement and alignment sensors. With this goal, the method of realizing mechanically tunable cavity resonators in groove gap waveguides technology is presented. The resonance frequency of the cavity is then used for displacement sensing. It is also demonstrated that the symmetry properties of a pair of groove gap waveguide cavities can be used to improve the robustness...
-
Algoritmically improved microwave radar monitors breathing more acurrate than sensorized belt
PublikacjaThis paper describes a novel way to measure, process, analyze, and compare respiratory signals acquired by two types of devices: a wearable sensorized belt and a microwave radar-based sensor. Both devices provide breathing rate readouts. First, the background research is presented. Then, the underlying principles and working parameters of the microwave radar-based sensor, a contactless device for monitoring breathing, are described....
-
Zirconia-based mixed potential sensor with Pt electrode prepared by spin-coating of polymeric precursor
PublikacjaMany types of yttria-stabilized zirconia (YSZ) based gas sensors have been explored extensively in recent years. Great attention have been directed to mixed-potential-type gas sensors. It is due to growing concerns with environmental issues. Not without a significance is the fact of very attractive performance of this type of sensor allowing to detect low concentration of pollutant gases. In this paper two types of YSZ based mixed-potential...
-
Application of thin diamond films in low-coherence fiber-optic Fabry Pérot displacement sensor
PublikacjaThe novel fiber-optic low coherence sensor with thin diamond films is demonstrated. The undoped and boron-doped diamond films were elaborated by the use of the microwave plasma enhanced chemical vapor deposition (μPE CVD) system. The optical signal from the Fabry–Pérot cavity made with the application of those thin films is sensitive to displacement. The sensor characterization was made in the range of 0–600 μm. The measurements...
-
Microscale diamond protection for a ZnO coated fiber optic sensor
PublikacjaFiber optic sensors are widely used in environmental, biological and chemical sensing. Due to the demanding environmental conditions in which they can be used, there is a risk of damaging the sensor measurement head placed in the measuring field. Sensors using nanolayers deposited upon the fiber structure are particularly vulnerable to damage. A thin film placed on the surface of the fiber end-face can be prone to mechanical damage...
-
Advanced Sensor for Non-Invasive Breast Cancer and Brain Cancer Diagnosis Using Antenna Array with Metamaterial-Based AMC
PublikacjaMicrowave imaging techniques can identify abnormal cells in early development stages. This study introduces a microstrip patch antenna coupled with artificial magnetic conductor (AMC) to realize improved sensor for non-invasive (early-stage) breast cancer and brain cancer diagnosis. The frequency selectivity of the proposed antenna has been increased by the presence of AMC by creating an additional resonance at 2.276 GHz associated...
-
Determination of Chemical Oxygen Demand (COD) at Boron-doped Diamond (BDD) Sensor by Means of Amperometric Technique
PublikacjaA boron-doped diamond (BDD) sensor was proposed for effective detection of chemical oxygen demand (COD) by means of amperometric technique. Thin boron doped diamond active sensor layer was deposited on Si wafer and glassy carbon substrate by Microwave Plasma Enhanced Chemical Vapor Deposition (MW PE CVD). The structure of BDD was confirmed by Raman spectra analysis. Broad Raman bands centered at 482 cm-1 and 1219 cm-1 are typical...
-
Determination of chemical oxygen demand (cod) at boron-doped diamond (bdd) sensor by means of amperometric technique
PublikacjaA boron-doped diamond (BDD) sensor was proposed for effective detection of chemical oxygen demand (COD) by means of amperometric technique. Thin boron doped diamond active sensor layer was deposited on Si wafer and glassy carbon substrate by Microwave Plasma Enhanced Chemical Vapor Deposition (MW PE CVD). The structure of BDD was confirmed by Raman spectra analysis. Broad Raman bands centered at 482 cm-1 and 1219 cm-1 are typical...
-
Uncertainty Quantification of Additive Manufacturing Post-Fabrication Tuning of Resonator-Based Microwave Sensors
PublikacjaReconfigurability, especially in terms of the ability of adjusting the operating frequency, has become an important prerequisite in the design of modern microwave components and systems. It is also pertinent to microwave sensors developed for a variety of applications such as characterization of material properties of solids or liquids. This paper discusses uncertainty quantification of additive-manufacturing-based post-fabrication...
-
Inverse Modeling and Optimization of CSRR-based Microwave Sensors for Industrial Applications
PublikacjaDesign optimization of multivariable resonators is a challenging topic in the area of microwave sensors for industrial applications. This paper proposes a novel methodology for rapid re-design and parameter tuning of complementary split-ring resonators (CSRRs). Our approach involves inverse surrogate models established using pre-optimized resonator data as well as analytical correction techniques to enable rapid adjustment of geometry...
-
Highly sensitive microwave sensors based on open complementary square split-ring resonator for sensing liquid materials
PublikacjaThis paper presents high-sensitivity sensors based on open complementary square split-ring resonator and modified open complementary split-ring resonator operating at 4.5 GHz and 3.4 GHz, respectively. The sensors are designed for the detection of multiple liquid materials, including distilled water, methanol, and ethanol. The liquid under test is filled in a glass container loaded using a pipette. Compared to the conventional...
-
Graphene field-effect transistor application for flow sensing
PublikacjaMicroflow sensors offer great potential for applications in microfluidics and lab-on-a-chip systems. However, thermal-based sensors, which are commonly used in modern flow sensing technology, are mainly made of materials with positive temperature coefficients (PTC) and suffer from a self-heating effect and slow response time. Therefore, the design of novel devices and careful selection of materials are required to improve the overall...
-
Distance measurement by the low coherent interferometer
Dane BadawczeThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1560 nm, an optical spectrum analyzer and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Nitrogen-Doped Diamond Film for Optical Investigation of Hemoglobin Concentration
PublikacjaIn this work we present the fabrication and characterization of a diamond film which can be utilized in the construction of optical sensors for the investigation of biological samples. We produced a nitrogen-doped diamond (NDD) film using a microwave plasma enhanced chemical vapor deposition (MWPECVD) system. The NDD film was investigated with the use of scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman...
-
Electromagnetic Modeling of Microstrip Elements Aided with Artificial Neural Network
PublikacjaThe electromagnetic modeling principle aided withartificial neural network to designing the microwave widebandelements/networks prepared in microstrip technology is proposedin the paper. It is assumed that the complete information is knownfor the prototype design which is prepared on certain substratewith certain thickness and electric permittivity. The longitudinaland transversal dimensions of new design...
-
Distance measurement by the low coherent interferometer with NND layer (the source wavelegth 1310 nm)
Dane BadawczeThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
A Model-Order Reduction Approach for Electromagnetic Problems With Nonaffine Frequency Dependence
PublikacjaThe aim of this paper is to present a novel model-order reduction (MOR) technique for the efcient frequency-domain nite-element method (FEM) simulation of microwave components. It is based on the standard reduced-basis method, but the subsequent expansion frequency points are selected following the so-called sparsied greedy strategy. This feature makes it especially useful to perform a fast-frequency sweep of problems that lead...
-
Doped Nanocrystalline Diamond Films as Reflective Layers for Fiber-Optic Sensors of Refractive Index of Liquids
PublikacjaThis paper reports the application of doped nanocrystalline diamond (NCD) films—nitrogen-doped NCD and boron-doped NCD—as reflective surfaces in an interferometric sensor of refractive index dedicated to the measurements of liquids. The sensor is constructed as a Fabry–Pérot interferometer, working in the reflective mode. The diamond films were deposited on silicon substrates by a microwave plasma enhanced chemical vapor deposition...
-
Novel Complementary Resonator for Dielectric Characterization of Substrates Based on Permittivity and Thickness
PublikacjaThis paper presents a novel complementary resonator featuring high sensitivity, low fabrication cost, and improved performance. The proposed structure consists of a complementary concentric square and circular ring resonator (CCSCRR) with multiple splits to enhance the inductance of the resonator. The proposed CCSCRR is coupled to a microstrip transmission line with an impedance of fifty ohms to create a high-sensitivity sensor....
-
Low-strain sensor based on the flexible boron-doped diamond-polymer structures
PublikacjaA free-standing high boron-doped diamond nanosheet (BDDNS) has been fabricated for the development of a flexible BDDNS strain senor. High boron-doped diamond was initially grown on a tantalum substrate in a microwave plasma-assisted chemical vapor deposition method, and was then transferred to a Kapton polymer substrate to fabricate the flexible BDDNS/Kapton device. Before performing the transfer process, the thin BDDNS’s morphology...
-
Development of a Terahertz Metamaterial Micro-Biosensor for Ultrasensitive Multispectral Detection of Early-Stage Cervical Cancer
PublikacjaThis research introduces an innovative design for a metamaterial-based compact multi-band biosensor aimed at early-stage cervical cancer detection. The device operates within the terahertz (THz) frequency range, specifically from zero to six THz. The proposed sensor architecture features a metamaterial layer composed of a patterned aluminum structure deposited on a polyimide substrate. The primary design objective is to optimize...
-
Expedited Re-Design of Multi-Band Passive Microwave Circuits Using Orthogonal Scaling Directions and Gradient-Based Tuning
PublikacjaGeometry scaling of microwave circuits is an essential but challenging task. In particular, the employment of a given passive structure in a different application area often requires re-adjustment of the operating frequencies/bands while maintaining top performance. Achieving this necessitates utilization of numerical optimization methods. Nonetheless, if the intended frequencies are distant from the ones at the starting point,...
-
Operational Enhancement of Numerical Weather Prediction with Data from Real-time Satellite Images
PublikacjaNumerical weather prediction (NWP) is a rapidly expanding field of science, which is related to meteorology, remote sensing and computer science. Authors present methods of enhancing WRF EMS (Weather Research and Forecast Environmental Modeling System) weather prediction system using data from satellites equipped with AMSU sensor (Advanced Microwave Sounding Unit). The data is acquired with Department of Geoinformatics’ ground...
-
Magnetic field mapping along a NV-rich nanodiamond-doped fiber
PublikacjaIntegration of NV−-rich diamond with optical fibers enables guiding quantum information on the spin state of the NV− color center. Diamond-functionalized optical fiber sensors have been demonstrated with impressive sub-nanotesla magnetic field sensitivities over localized magnetic field sources, but their potential for distributed sensing remains unexplored. The volumetric incorporation of diamonds into the optical fiber core allows...
-
New Complementary Resonator for Permittivity- and Thickness-Based Dielectric Characterization
PublikacjaThe design of high-performance complementary meta-resonators for microwave sensors featur-ing high sensitivity and consistent evaluation of dielectric materials is challenging. This paper presents the design and implementation of a novel complementary resonator with high sensi-tivity for dielectric substrate characterization based on permittivity and thickness. A comple-mentary crossed arrow resonator (CCAR) is proposed and integrated...
-
Nanocrystalline diamond sheets as protective coatings for fiber-optic measurement head
PublikacjaFiber-optic sensors find numerous applications in science and industry, but their full potential is limited because of the risk of damaging the measurement head, in particular, due to the vulnerability of unprotected tips of the fiber to mechanical damage and aggressive chemical agents. In this paper, we report the first use of a new nanocrystalline diamond structure in a fiber-optic measurement head as a protective coating of...
-
Sztuczny sensor smaku a zmysł smaku
PublikacjaOmówiono klasy smaku i działanie zmysłu smaku, który odgrywa ogromną rolę w ocenie jakości żywności metodami organoleptycznymi. Metody te nie są w pełni obiektywne, stąd poszukuje się sztucznego sensora smaku. Przedstawiono szereg rozwiązań prowadzących do opracowania sensora smaku na większą skalę. Omówiono wybrane potencjometryczne i woltamperometryczne sensory smaku, a także ich handlowe modele.
-
Comparative study on the effectiveness of various types of road traffic intensity detectors
PublikacjaVehicle detection and speed measurements are crucial tasks in traffic monitoring systems. In this work, we focus on several types of electronic sensors, operating on different physical principles in order to compare their effectiveness in real traffic conditions. Commercial solutions are based on road tubes, microwave sensors, LiDARs, and video cameras. Distributed traffic monitoring systems require a high number of monitoring...
-
Growth and Isolation of Large Area Boron‐Doped Nanocrystalline Diamond Sheets: A Route toward Diamond‐on‐Graphene Heterojunction
PublikacjaMany material device applications would benefit from thin diamond coatings, but current growth techniques, such as chemical vapor deposition (CVD) or atomic layer deposition require high substrate and gas‐phase temperatures that would destroy the device being coated. The development of freestanding, thin boron‐doped diamond nanosheets grown on tantalum foil substrates via microwave plasma‐assisted CVD is reported. These diamond...
-
Application of boron-doped diamond film and ZnO layer in the Fabry-Pérot interferometer
PublikacjaIn this article there have been presented the use of boron-doped diamond films for sensor applications. The low-finesse Fabry-Pérot interferometer working in the reflective mode has been implemented. Two kinds of reflective layers have been elaborated: boron-doped diamond thin films and zinc-oxide (ZnO) layer. Thin ZnO layers were deposited by Atomic Layer Deposition (ALD) on the face of a standard telecommunication single-mode...
-
A novel hierarchically-porous diamondized polyacrylonitrile sponge-like electrodes for acetaminophen electrochemical detection
PublikacjaA novel composite electrode material consisting of tangled fibrous polyacrylonitrile-based hierarchically-struc- tured nanocomposites has been produced by wet-spinning, carbonized and decorated with a carbon nano- architecture by microwave plasma-enhanced chemical vapor deposition and investigated as a metal-free electrode for the enhanced electrochemical detection of acetaminophen. Surprisingly, the hierarchical fiber ar- chitecture...
-
Incorporation of nitrogen in diamond films – A new way of tuning parameters for optical passive elements
PublikacjaThis paper investigates the impact of nitrogen incorporation in diamond films for the construction of an interferometric sensor to measure displacement. Diamond films with different nitrogen levels (0–5%) were deposited on silicon substrates by microwave plasma enhanced chemical vapor deposition. The structural characteristics of these samples are characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), confocal...