Filtry
wszystkich: 2751
-
Katalog
- Publikacje 1926 wyników po odfiltrowaniu
- Czasopisma 94 wyników po odfiltrowaniu
- Konferencje 38 wyników po odfiltrowaniu
- Osoby 271 wyników po odfiltrowaniu
- Projekty 4 wyników po odfiltrowaniu
- Laboratoria 1 wyników po odfiltrowaniu
- Zespoły Badawcze 1 wyników po odfiltrowaniu
- Kursy Online 114 wyników po odfiltrowaniu
- Wydarzenia 3 wyników po odfiltrowaniu
- Dane Badawcze 299 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: NEURAL ARCHITECTURE SEARCH
-
Neural Architecture Search for Skin Lesion Classification
PublikacjaDeep neural networks have achieved great success in many domains. However, successful deployment of such systems is determined by proper manual selection of the neural architecture. This is a tedious and time-consuming process that requires expert knowledge. Different tasks need very different architectures to obtain satisfactory results. The group of methods called the neural architecture search (NAS) helps to find effective architecture...
-
Deep neural network architecture search using network morphism
PublikacjaThe paper presents the results of the research on neural architecture search (NAS) algorithm. We utilized the hill climbing algorithm to search for well-performing structures of deep convolutional neural network. Moreover, we used the function preserving transformations which enabled the effective operation of the algorithm in a short period of time. The network obtained with the advantage of NAS was validated on skin lesion classification...
-
In Search of Naval Beauty. Historical Study of Ship Architecture
PublikacjaDesigning ships is no mean achievement. In the old days, constructors focused on making their ships visually appealing, while paying scant regard to the living conditions of the crew. Such an approach reflected the state of the art in ship building at the time as well as the social order prevalent in those days. A breakthrough came no earlier than at the turn of the 19th / 20th centuries. The industrial revolution brought along...
-
The impact of the AC922 Architecture on Performance of Deep Neural Network Training
PublikacjaPractical deep learning applications require more and more computing power. New computing architectures emerge, specifically designed for the artificial intelligence applications, including the IBM Power System AC922. In this paper we confront an AC922 (8335-GTG) server equipped with 4 NVIDIA Volta V100 GPUs with selected deep neural network training applications, including four convolutional and one recurrent model. We report...
-
An automatic selection of optimal recurrent neural network architecture for processes dynamics modelling purposes
PublikacjaA problem related to the development of algorithms designed to find the structure of artificial neural network used for behavioural (black-box) modelling of selected dynamic processes has been addressed in this paper. The research has included four original proposals of algorithms dedicated to neural network architecture search. Algorithms have been based on well-known optimisation techniques such as evolutionary algorithms and...
-
Neural network based control system architecture proposal for underwatership hull cleaning robot.
PublikacjaPrzedstawiono model matematyczny podwodnej głowicy roboczej, oraz określono metodę jej pozycjonowania i orientacji w lokalnym środowisku. Zaproponowano architekturę układu sterowania, opartego na bazie sieci neuronowych, za pomocą którego można sterować podwodnym robotem, przeznaczonym do czyszczenia burt statku.
-
MODERNIST, 1920S AND 1930S INDUSTRIAL ARCHITECTURE OF THE PORT OF GDYNIA - IN SEARCH OF AN AESTHETIC LANGUAGE FOR UTILITARIAN BUILDINGS OF THE POLISH GATEWAY TO THE WORLD
PublikacjaThe purpose of the article is to present the results of the research on the aspects of the Port of Gdynia modernist architecture aesthetics. Its construction was one of the two major projects carried out in the interwar period in Poland. In the course of analyses it has been attempted to answer the question whether an individual aesthetic language has been created in the 1920s and 1930s for the industrial architecture of the Polish...
-
Neural Network Subgraphs Correlation with Trained Model Accuracy
PublikacjaNeural Architecture Search (NAS) is a computationally demanding process of finding optimal neural network architecture for a given task. Conceptually, NAS comprises applying a search strategy on a predefined search space accompanied by a performance evaluation method. The design of search space alone is expected to substantially impact NAS efficiency. We consider neural networks as graphs and find a correlation between the presence...
-
Gesture Recognition With the Linear Optical Sensor and Recurrent Neural Networks
PublikacjaIn this paper, the optical linear sensor, a representative of low-resolution sensors, was investigated in the multiclass recognition of near-field hand gestures. The recurrent neural network (RNN) with a gated recurrent unit (GRU) memory cell was utilized as a gestures classifier. A set of 27 gestures was collected from a group of volunteers. The 27 000 sequences obtained were divided into training, validation, and test subsets....
-
Using Long-Short term Memory networks with Genetic Algorithm to predict engine condition
PublikacjaPredictive maintenance (PdM) is a type of approach for maintenance processes, allowing maintenance actions to be managed depending on the machine's current condition. Maintenance is therefore carried out before failures occur. The approach doesn’t only help avoid abrupt failures but also helps lower maintenance cost and provides possibilities to manufacturers to manage maintenance budgets in a more efficient way. A new deep neural...
-
Efkleidis Katsaros
OsobyEfklidis Katsaros received the B.Sc. degree in mathematics from the Aristotle University of Thessaloniki, Greece, in 2016, and the M.Sc. degree (cum laude) in data science: statistical science from Leiden University, The Netherlands, in 2019. He is currently pursuing the Ph.D. degree in deep video multi-task learning with the Department of Biomedical Engineering, Gdańsk University of Technology, Poland. Since 2020, he has been...
-
Poprawa jakości klasyfikacji głębokich sieci neuronowych poprzez optymalizację ich struktury i dwuetapowy proces uczenia
PublikacjaW pracy doktorskiej podjęto problem realizacji algorytmów głębokiego uczenia w warunkach deficytu danych uczących. Głównym celem było opracowanie podejścia optymalizującego strukturę sieci neuronowej oraz zastosowanie uczeniu dwuetapowym, w celu uzyskania mniejszych struktur, zachowując przy tym dokładności. Proponowane rozwiązania poddano testom na zadaniu klasyfikacji znamion skórnych na znamiona złośliwe i łagodne. W pierwszym...
-
Accurate Lightweight Calibration Methods for Mobile Low-Cost Particulate Matter Sensors
PublikacjaMonitoring air pollution is a critical step towards improving public health, particularly when it comes to identifying the primary air pollutants that can have an impact on human health. Among these pollutants, particulate matter (PM) with a diameter of up to 2.5 μ m (or PM2.5) is of particular concern, making it important to continuously and accurately monitor pollution related to PM. The emergence of mobile low-cost PM sensors...
-
Fast Approximate String Search for Wikification
PublikacjaThe paper presents a novel method for fast approximate string search based on neural distance metrics embeddings. Our research is focused primarily on applying the proposed method for entity retrieval in the Wikification process, which is similar to edit distance-based similarity search on the typical dictionary. The proposed method has been compared with symmetric delete spelling correction algorithm and proven to be more efficient...
-
Neural network model of ship magnetic signature for different measurement depths
PublikacjaThis paper presents the development of a model of a corvette-type ship’s magnetic signature using an artificial neural network (ANN). The capabilities of ANNs to learn complex relationships between the vessel’s characteristics and the magnetic field at different depths are proposed as an alternative to a multi-dipole model. A training dataset, consisting of signatures prepared in finite element method (FEM) environment Simulia...
-
Decision making process using deep learning
PublikacjaEndüstri 4.0, dördüncü endüstri devrimi veya Endüstriyel Nesnelerin İnterneti (IIoT) olarak adlandırılan sanayi akımı, işletmelere, daha verimli, daha büyük bir esneklikle, daha güvenli ve daha çevre dostu bir şekilde üretim yapma imkanı sunmaktadır. Nesnelerin İnterneti ile bağlantılı yeni teknoloji ve hizmetler birçok endüstriyel uygulamada devrim niteliği taşımaktadır. Fabrikalardaki otomasyon, tahminleyici bakım (PdM – Predictive...
-
Deep Learning Basics 2023/24
Kursy OnlineA course about the basics of deep learning intended for students of Computer Science. It includes an introduction to supervised machine learning, the architecture of basic artificial neural networks and their training algorithms, as well as more advanced architectures (convolutional networks, recurrent networks, transformers) and regularization and optimization techniques.
-
Self Organizing Maps for Visualization of Categories
PublikacjaVisualization of Wikipedia categories using Self Organizing Mapsshows an overview of categories and their relations, helping to narrow down search domains. Selecting particular neurons this approach enables retrieval of conceptually similar categories. Evaluation of neural activations indicates that they form coherent patterns that may be useful for building user interfaces for navigation over category structures.
-
Case Study NEB Atlas / part I - 3D Models / Brunnshög, Lund
Dane BadawczeThe data presents the results of work on the analysis of contemporary neighbourhoods. The aim of this part of the research was to create a digital model - a simplified digital twin - for selected parts of housing estates already realised in various cities in Europe. This group presents a model for a fragment of the Brunnshög district in Lund, Sweden....
-
Constrained aerodynamic shape optimization using neural networks and sequential sampling
PublikacjaAerodynamic shape optimization (ASO) involves computational fluid dynamics (CFD)-based search for an optimal aerodynamic shape such as airfoils and wings. Gradient-based optimization (GBO) with adjoints can be used efficiently to solve ASO problems with many design variables, but problems with many constraints can still be challenging. The recently created efficient global optimization algorithm with neural network (NN)-based prediction...
-
Satellite Image Classification Using a Hierarchical Ensemble Learning and Correlation Coefficient-Based Gravitational Search Algorithm
PublikacjaSatellite image classification is widely used in various real-time applications, such as the military, geospatial surveys, surveillance and environmental monitoring. Therefore, the effective classification of satellite images is required to improve classification accuracy. In this paper, the combination of Hierarchical Framework and Ensemble Learning (HFEL) and optimal feature selection is proposed for the precise identification...
-
Magdalena Szuflita-Żurawska
OsobyMagdalena Szuflita-Żurawska jest kierownikiem Sekcji Informacji Naukowo-Technicznej na Politechnice Gdańskiej oraz Liderem Centrum Kompetencji Otwartej Nauki przy Bibliotece Politechniki Gdańskiej. Jej główne zainteresowania badawcze koncentrują się w obszarze komunikacji naukowej oraz otwartych danych badawczych, a także motywacji i produktywności naukowej. Jest odpowiedzialna między innymi za prowadzenie szkoleń dla pracowników...
-
Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures
PublikacjaMany studies have been performed to put quantifying uncertainties into the seismic risk assessment of reinforced concrete (RC) buildings. This paper provides a risk-assessment support tool for purpose of retrofitting and potential design strategies of RC buildings. Machine Learning (ML) algorithms were developed in Python software by innovative methods of hyperparameter optimization, such as halving search, grid search, random...
-
Case Study NEB Atlas / part I - 3D Models / King's Cross, London
Dane BadawczeThe data presents the results of work on the analysis of contemporary neighbourhoods. The aim of this part of the research was to create a digital model - a simplified digital twin - for selected parts of housing estates already realised in various cities in Europe. This group presents a model for a fragment of the King's Cross, London, UK. The students...
-
Prediction of maximum tensile stress in plain-weave composite laminates with interacting holes via stacked machine learning algorithms: A comparative study
PublikacjaPlain weave composite is a long-lasting type of fabric composite that is stable enough when being handled. Open-hole composites have been widely used in industry, though they have weak structural performance and complex design processes. An extensive number of material/geometry parameters have been utilized for designing these composites, thereby an efficient computational tool is essential for that purpose. Different Machine Learning...
-
Energy Management for PV Powered Hybrid Storage System in Electric Vehicles Using Artificial Neural Network and Aquila Optimizer Algorithm
PublikacjaIn an electric vehicle (EV), using more than one energy source often provides a safe ride without concerns about range. EVs are powered by photovoltaic (PV), battery, and ultracapacitor (UC) systems. The overall results of this arrangement are an increase in travel distance; a reduction in battery size; improved reaction, especially under overload; and an extension of battery life. Improved results allow the energy to be used efficiently,...
-
Architecture Civil Engineering Environment
Czasopisma -
LSA Is not Dead: Improving Results of Domain-Specific Information Retrieval System Using Stack Overflow Questions Tags
PublikacjaThe paper presents the approach to using tags from Stack Overflow questions as a data source in the process of building domain-specific unsupervised term embeddings. Using a huge dataset of Stack Overflow posts, our solution employs the LSA algorithm to learn latent representations of information technology terms. The paper also presents the Teamy.ai system, currently developed by Scalac company, which serves as a platform that...
-
Generalized regression neural network and fitness dependent optimization: Application to energy harvesting of centralized TEG systems
PublikacjaThe thermoelectric generator (TEG) system has attracted extensive attention because of its applications in centralized solar heat utilization and recoverable heat energy. The operating efficiency of the TEG system is highly affected by operating conditions. In a series-parallel structure, due to diverse temperature differences, the TEG modules show non-linear performance. Due to the non-uniform temperature distribution (NUTD) condition,...
-
AUTOMATYCZNA KLASYFIKACJA MOWY PATOLOGICZNEJ
PublikacjaAplikacja przedstawiona w niniejszym rozdziale służy do automatycznego wykrywania mowy patologicznej na podstawie bazy nagrań. W pierwszej kolejności przedstawiono założenia leżące u podstaw przeprowadzonych badan wraz z wyborem bazy mowy patologicznej. Zaprezentowano również zastosowane algorytmy oraz cechy sygnału mowy, które pozwalają odróżnić mowę niezaburzoną od mowy patologicznej. Wytrenowane sieci neuronowe zostały następnie...
-
Electronic nose algorithm design using classical system identification for odour intensity detection
PublikacjaThe two elements considered crucial for constructing an efficient environmental odour intensity monitoring systems are sensors and algorithms typically addressed to as electronic nose sensor (e-nose). Due to operational complexity of biochemical sensors developed in human bodies algorithms based on computational methods of artificial intelligence are typically considered superior to classical model based approaches in development...
-
Inteligentne systemy agentowe w systemach zdalnego nauczania
PublikacjaW pracy omówiono inteligentne systemy agentowe w systemach zdalnego nauczania. Po krótkim przedstawieniu ewolucji systemów zdalnego nauczania i ich wybranych zastosowań, scharakteryzowano inteligentne agenty edukacyjne. Omówiono wykorzystanie programowania genetycznego oraz algorytmów neuro-ewolucyjnych do implementacji oprogramowania tej klasy. Ponadto, nawiązano do modelu Map-Reduce, który efektywnie wspiera architekturę nowoczesnego...
-
Optimized Computational Intelligence Model for Estimating the Flexural Behavior of Composite Shear Walls
PublikacjaThis article presents a novel approach to estimate the flexural capacity of reinforced concrete-filled composite plate shear walls using an optimized computational intelligence model. The proposed model was developed and validated based on 47 laboratory data points and the Transit Search (TS) optimization algorithm. Using 80% of the experimental dataset, the optimized model was selected by determining the unknown coefficients of...
-
Automatic Rhythm Retrieval from Musical Files
PublikacjaThis paper presents a comparison of the effectiveness of two computational intelligence approaches applied to the task of retrieving rhythmic structure from musical files. The method proposed by the authors of this paper generates rhythmic levels first, and then uses these levels to compose rhythmic hypotheses. Three phases: creating periods, creating simplified hypotheses and creating full hypotheses are examined within this study....
-
Rapid Surrogate-Aided Multi-Criterial Optimization of Compact Microwave Passives Employing Machine Learning and ANNs
PublikacjaThis article introduces an innovative method for achieving low-cost and reliable multi-objective optimization (MO) of microwave passive circuits. The technique capitalizes on the attributes of surrogate models, specifically artificial neural networks (ANNs), and multi-resolution electromagnetic (EM) analysis. We integrate the search process into a machine learning (ML) framework, where each iteration produces multiple infill points...
-
Case Study NEB Atlas / part II - Autodesk Forma analysis / Garnizon district in Gdansk, Poland
Dane BadawczeThe data present the results of the work on the analysis of modern settlements. The goal of this part of the research was to analyze housing estates already in place in various European cities. Analyses were performed in real time using artificial intelligence, and responses were searched for sun hours, daylight potential, noise, wind, and microclimate....
-
Case Study NEB Atlas / part II - Autodesk Forma analysis / BedZED, London
Dane BadawczeThe data presents the results of work on the analysis of contemporary neighbourhoods. The aim of this part of the research was to analysis housing estates already existed in various cities in Europe. The analyses ware done in real time with AI and powered for key factors such as sun hours, daylight potential, noise, wind, and microclimate. These data...
-
Case Study NEB Atlas / part II - Autodesk Forma analysis / Seestadt Aspern, Vienna, Austria
Dane BadawczeThe data present the results of the work on the analysis of modern settlements. The goal of this part of the research was to analyze housing estates already in place in various European cities. Analyses were performed in real time using artificial intelligence, and responses were searched for sun hours, daylight potential, noise, wind, and microclimate....
-
Case Study NEB Atlas / part II - Autodesk Forma (formerly Spacemaker) / Battersea Power Station Development, London
Dane BadawczeThe data presents the results of work on the analysis of contemporary neighbourhoods. The aim of this part of the research was to analysis housing estates already existed in various cities in Europe. The analyses ware done in real time with AI and powered for key factors such as sun hours, daylight potential, noise, wind, and microclimate. These data...
-
Case Study NEB Atlas / part II - Autodesk Forma analysis / ZAC de Bonne, Grenoble, France
Dane BadawczeThe data presents the results of work on the analysis of contemporary neighbourhoods. The aim of this part of the research was to analysis housing estates already existed in various cities in Europe. The analyses ware done in real time with AI and powered for key factors such as sun hours, daylight potential, noise, wind, and microclimate. These data...
-
Case Study NEB Atlas / part II - Autodesk Forma analysis / Brunnshög district in Lund, Sweden
Dane BadawczeThe data presents the results of work on the analysis of contemporary neighbourhoods. The aim of this part of the research was to analysis housing estates already existed in various cities in Europe. The analyses ware done in real time with AI and powered for key factors such as sun hours, daylight potential, noise, wind, and microclimate. These data...
-
Case Study NEB Atlas / part II - Autodesk Forma analysis / Västra Hamnen, Malmö, Sweden.
Dane BadawczeThe data present the results of the work on the analysis of modern settlements. The goal of this part of the research was to analyze housing estates already in place in various European cities. Analyses were performed in real time using artificial intelligence, and responses were searched for sun hours, daylight potential, noise, wind, and microclimate....
-
Case Study NEB Atlas / part II - Autodesk Forma analysis / Hammarby-Sjöstad, Stockholm, Sweden.
Dane BadawczeThe data present the results of the work on the analysis of modern settlements. The goal of this part of the research was to analyze housing estates already in place in various European cities. Analyses were performed in real time using artificial intelligence, and responses were searched for sun hours, daylight potential, noise, wind, and microclimate....
-
Case Study NEB Atlas / part II - Autodesk Forma analysis / Pilestredet Park, Oslo, Norway.
Dane BadawczeThe data present the results of the work on the analysis of modern settlements. The goal of this part of the research was to analyze housing estates already in place in various European cities. Analyses were performed in real time using artificial intelligence, and responses were searched for sun hours, daylight potential, noise, wind, and microclimate....
-
Case Study NEB Atlas / part II - Autodesk Forma analysis / King’s Cross, London, UK.
Dane BadawczeThe data present the results of the work on the analysis of modern settlements. The goal of this part of the research was to analyze housing estates already in place in various European cities. Analyses were performed in real time using artificial intelligence, and responses were searched for sun hours, daylight potential, noise, wind, and microclimate....
-
Case Study NEB Atlas / part II - Autodesk Forma analysis / Oceanhamnen, Helsingborg, Sweden
Dane BadawczeThe data present the results of the work on the analysis of modern settlements. The goal of this part of the research was to analyze housing estates already in place in various European cities. Analyses were performed in real time using artificial intelligence, and responses were searched for sun hours, daylight potential, noise, wind, and microclimate....
-
Case Study NEB Atlas / part II - Autodesk Forma analysis / La Courrouze district in Rennes, France
Dane BadawczeThe data present the results of the work on the analysis of modern settlements. The goal of this part of the research was to analyze housing estates already in place in various European cities. Analyses were performed in real time using artificial intelligence, and responses were searched for sun hours, daylight potential, noise, wind, and microclimate....
-
Gustav Oelsner i Hugo Althoff. W poszukiwaniu godnych warunków zamieszkania w Altonie i Gdańsku
PublikacjaCelem artykułu jest porównanie aktywności zawodowej dwóch architektów miejskich odpowiedzialnych za przestrzenny i architektoniczny rozwój Gdańska i Altony - Hugona Althoffa i Gustava Oelsnera, oraz porównanie architektury i urbanistyki modernistycznych osiedli socjalnych. Celem porównania jest zbadanie, w jakim stopniu lokalne uwarunkowania i tradycja mogą być nośnikiem uniwersalnych ideałów modernizmu i indywidualnej ekspresji...
-
Harmony Search for Data Mining with Big Data
PublikacjaIn this paper, some harmony search algorithms have been proposed for data mining with big data. Three areas of big data processing have been studied to apply new metaheuristics. The first problem is related to MapReduce architecture that can be supported by a team of harmony search agents in grid infrastructure. The second dilemma involves development of harmony search in preprocessing of data series before data mining. Moreover,...
-
Cleaner energy for sustainable future using hybrid photovoltaics-thermoelectric generators system under non-static conditions using machine learning based control technique
PublikacjaIn addition to the load demand, the temperature difference between the hot and cold sides of the thermoelectric generator (TEG) module determines the output power for thermoelectric generator systems. Maximum power point tracking (MPPT) control is needed to track the optimal global power point as operating conditions change. The growing use of electricity and the decline in the use of fossil fuels have sparked interest in photovoltaic-TEG...