Filters
total: 783
filtered: 636
Search results for: OPTICAL MEASUREMENTS
-
Detection of petroleum products using optical coherence tomography
PublicationIn this work, we present a novel method developed for the analysis of the properties of thin layers for detecting petroleum products on a water surface using a commercially available optical coherence tomography (OCT) system. The spectral density analysis of the signal from a spectroscopic OCT (S-OCT) enables us to perform the precision calculation of the thin layer thickness and other properties like homogeneity, and dispersion,...
-
Integrated acoustical-optical system for inventory of hydrotechnical objects
PublicationThe knowledge of the location, shape and other characteristics of spatial objects in the coastal areas has a significant impact on the functioning of ports, shipyards, and other waterinfrastructure facilities, both offshore and inland. Therefore, measurements of the underwater part of the waterside zone are taken, which means the bottom of the water and other underwater objects (e.g. breakwaters, docks, etc.), and objects above...
-
Time-frequency analysis in optical coherence tomography for technical objects examination
PublicationOptical coherence tomography (OCT) is one of the most advanced optical measurement techniques for complex structure visualization. The advantages of OCT have been used for surface and subsurface defect detection in composite materials, polymers, ceramics, non-metallic protective coatings, and many more. Our research activity has been focused on timefrequency spectroscopic analysis in OCT. It is based on time resolved spectral analysis...
-
Simultaneous optical and electrochemical label-free biosensing with ITO-coated lossy-mode resonance sensor
PublicationIn this work we discuss a new label-free biosensing device based on indium tin oxide (ITO) overlaid section of a multimode optical fiber fused silica core. The sensor has been used to optical measurements also simultaneously interrogated electrochemically (EC). Due to optimized thickness and optical properties of ITO film, a lossy-mode resonance (LMR) could be observed in the optical domain, where electrical properties of the film...
-
Study of the optical rotatory of potassium titanyl phosphate using the advanced dual-wavelength polarimetric method
PublicationA dual-wavelength high-accuracy universal polarimeter was applied to the circular birefringence and optical activity measurement in potassium titanyl phosphate (KTP) nonlinear crystal. The experimental setup used two single-mode He-Ne lasers with close wavelengths of 594 and 633 nm as light sources. Measurement has been carried out for two crystal settings in directions of a 45-degree relative angle to the [100] and [010] crystallographic...
-
Tuning of the finesse coefficient of optoelectronic devices
PublicationOptoelectronic devices attracted considerable attention in many branches of science and technology, which can be attributed to their unique properties. Many of them use optical cavities which parameters can be adopted to specific requirements. This thesis investigates the introduction of diamond structures (nitrogen-doped diamond film, boron-doped diamond film, undoped diamond sheet) to optical cavities to tune their finesse coefficient....
-
Optical properties of thin TiO2 film deposited on the fiber optic sensor head
PublicationThe presented study was focused on investigation of the titanium dioxide (TiO2) thin film deposited on the fiber tip. The intention of this investigation was using TiO2 film in the construction of the optical fiber sensor head. In the demonstrated construction TiO2 thin layer was deposited on the tip of a commonly used telecommunication single mode optical fiber (SMF-28) by means of the Atomic Layer Deposition (ALD). Thickness...
-
Optical-Spectrometry-Based Method for Immunosuppressant Medicine Level Detection in Aqueous Solutions
PublicationIn this paper, an investigation into detecting immunosuppressive medicine in aqueous solutions using a spectrometry-based technique is described. Using optical transmissive spectrometry, absorbance measurements in the spectra range from 250 nm to 1000 nm were carried out for different cyclosporine A (CsA) concentrations in aqueous solutions. The experiment was conducted for samples both with and without interferent substances—glucose...
-
Optical-Fiber Microsphere-Based Temperature Sensors with ZnO ALD Coating—Comparative Study
PublicationThis study presents the microsphere-based fiber-optic sensor with the ZnO Atomic Layer Deposition coating thickness of 100 nm and 200 nm for temperature measurements. Metrological properties of the sensor were investigated over the temperature range from 100 °C to 300 °C, with a 10 °C step. The interferometric signal was used to monitor the integrity of the microsphere and its attachment to the connecting fiber. For the sensor...
-
Testing of the longest span soil-steel bridge in Europe – new quality in measurements
PublicationThe article describes interdisciplinary and comprehensive diagnostic tests of final bridge inspection and acceptance proposed for a soil – steel bridge made of corrugated sheets, being the European span length record holder (25.74 m). As an effect of an original concept a detailed and precise information about the structure response was collected. The load test design was based on the nonlinear numerical simulations performed by...
-
Luminance Distribution Measurements in CAVE-Type Virtual Reality Systems
PublicationIn this article, the immerse 3D visualization lab just opened at the Gdańsk University of Technology is presented. The effect of user “immersion,” it such virtual reality systems, is largely dependent on the optical properties of projected images. Luminance distribution of screens was measured and the luminance uniformity was determined and discussed.
-
Low temperature growth of diamond films on optical fibers using Linear Antenna CVD system
PublicationIt is not trivial to achieve a good quality diamond-coated fibre interface due to a large difference in the properties and composition of the diamond films (or use coating even) and the optical fibre material, i.e. fused silica. One of the biggest problems is the high temperature during the deposition which influences the optical fibre or optical fibre sensor structure (e.g. long-period gratings (LPG)). The greatest advantage of...
-
Improved surface coverage of an optical fibre with nanocrystalline diamond by the application of dip-coating seeding
PublicationGrowth processes of diamond thin films on the fused silica optical fibres (10 cm in length) were investigated at various temperatures. Fused silica pre-treatment by dip-coating in a dispersion consisting of detonation nanodiamond (DND) in dimethyl sulfoxide (DMSO) with polyvinyl alcohol (PVA) was applied. Nanocrystalline diamond (NCD) films were deposited on the fibres using the microwave plasma assisted chemical vapour deposition...
-
Enhancing electrochemical properties of an ITO-coated lossy-mode resonance optical fiber sensor by electrodeposition of PEDOT:PSS
PublicationA sensor working in multiple domains may offer enhanced information about the properties of an investigated analyte, including those containing biological species. It has already been shown that a dual-domain sensing capability, i.e., in optical and electrochemical domains, can be offered by lossy-mode resonance (LMR) sensors based on indium-tin-oxide (ITO) thin film. The spectral response of the LMR sensors depends on the refractive...
-
Optical properties of the chemotherapy drugs used in the central nervous system lymphoma therapy: monitoring drug delivery
PublicationOur aim is to optically monitor the delivery of the chemotherapy drugs for brain tumours, particularly used in the central nervous system (CNS) lymphoma therapy. In vivo monitoring would help to optimize the treatment and avoiding unnecessary medications. Moreover, it would be beneficial to be able to measure which of the multi-regimen drugs actually do penetrate and how well into the brain tissue. There exist several potential...
-
Barium boron aluminum silicate glass system for solid state optical gas sensors
PublicationRecent increasing demand for new eco-friendly materials and for low cost fabrication process for use in optical sensors field, raise concern about alternative materials for this application. We have designed two glass-ceramics compositions from the quaternary ROAl2O3- SiO2-B2O3(R=Ba) alkali-earth aluminum silicate system, labeled B72 and B69, with high refractive index (>1.6), large values of Abbe number (94.0 and 53.0, respectively),...
-
Application of Thin ZnO ALD Layers in Fiber-Optic Fabry-Pérot Sensing Interferometers
PublicationIn this paper we investigated the response of a fiber-optic Fabry-Pérot sensing interferometer with thin ZnO layers deposited on the end faces of the optical fibers forming the cavity. Standard telecommunication single-mode optical fiber (SMF-28) segments were used with the thin ZnO layers deposited by Atomic Layer Deposition (ALD). Measurements were performed with the interferometer illuminated by two broadband sources operating...
-
Optical and electrical properties of ultrathin transparent nanocrystalline boron-doped diamond electrodes
PublicationThe optical properties of ultrathin (less than 100 nm) boron-doped nanocrystalline diamond (B-NCD) film were investigated in a wavelength range of 200 ÷ 20000 nm. The B-NCD refractive index showed values close to that of monocrystalline diamond (n = 2.45) in a broad wavelength range (450 ÷ 4000 nm). A transmittance up to 70% and the average film thickness of 70 nm were achieved. A special cone-shaped shim was used in the deposition...
-
Fiber-optic sensors based on microspheres with nanocoatings (Zastosowanie mikrosfer optycznych z cienkowarstwowymi pokryciami w czujnikach światłowodowych)
PublicationTemperature is one of the most important physical quantities. Temperature measurements are used in every field of life, especially electronics, electrical engineering, energy-related fields, including energy source and storage devices. The goal of this dissertation is to design and optimize the microsphere-based fiber-optic sensors construction for measurement of the sensor surrounding medium temperature, including selection of...
-
Fiber optic low-coherence Fabry-Pérot interferometer with ZnO layers in transmission and reflective mode: comparative study
PublicationA construction of a low-coherence fiber-optic Fabry-Pérot interferometer using a thin ZnO layer as a reflective surfaces was proposed and examined. In the investigated setup, the ZnO layer of thickness 200 nm were deposited on the face of the standard telecommunication single-mode optical fiber (SMF-28). Measurements of interference signal were performed for the interferometer working in the transmission and reflective mode, as...
-
Non-Destructive Testing of the Longest Span Soil-Steel Bridge in Europe—Field Measurements and FEM Calculations
PublicationThe article describes interdisciplinary and comprehensive non-destructive diagnostic tests of final bridge inspection and acceptance proposed for a soil-steel bridge made of corrugated sheets, being the European span length record holder (25.74 m). As an effect of an original concept a detailed and precise information about the structure short-term response was collected. Periodic diagnostics of bridge deformations was done one...
-
Measurement of complex refractive index of human blood by low-coherence interferometry
PublicationIn this article, the usefulness of the optical technique for measurements of blood complex refractive index has been examined. Measurement of optical properties of human blood is difficult to perform because of its nonuniform nature. However, results of my investigation have shown the usefulness of low-coherencei nterferometry for measurement complex refractive index of human blood. Furthermore, mathematical analysis of spectrum...
-
Thermally tuneable optical and electrochemical properties of Au-Cu nanomosaic formed over the host titanium dimples
PublicationAu-Cu nanostructures offer unique optical and catalytic properties unlike the monometallic ones resulting from the specific interaction. Among others, they have the ability to exhibit surface plasmon resonance, electrochemical activity towards the oxygen and hydrogen evolution reaction (OER, HER) as well as improved photoresponse in relation to monometalic but those properties depend highly on the substrate where bimetallic structures...
-
Examination method of the effect of the incidence angle of laser beam on distance measurement accuracy to surfaces with different colour and roughness
PublicationInterest in the influence of the incidence angle of a laser beam to distance measurements can be seen in many areas of science and technology: geodesy, glaciology, archaeology, machine automation, and others. This paper presents results of measurements of the effect of the incidence angle of a laser beam to distance measurements to the surfaces of different colour and roughness by Topcon's electro-optical total station with an...
-
Stability of thin film diamond mirror for applications in interferometers under the short-time exposure on selected aggressive chemicals
PublicationIn presented study a thin boron-doped diamond film was proposed for application in the interferometry as a highly durable optical mirror. The unique properties of the diamond films, like high chemical stability and hardness, allow them to be used even in the chemically aggressive environment, where the commonly used silver mirrors can be susceptible to damage. The investigated nanodiamond layer was fabricated by uPE CVD method...
-
Topography measurement methods evaluation for entire bending-fatigued fracture surfaces of specimens obtained by explosive welding
PublicationIn this paper, the methods of compensation of differences in the results of entire bending-fatigued fracture surface topographies were presented. The roughness evaluation was performed with a focus variation microscope and confocal surface topography measurement techniques. The differences in the ISO 25178 roughness parameters were investigated and procedures for their compensation were studied. It was found that various types...
-
Combined Long-Period Fiber Grating and Microcavity In-Line Mach–Zehnder Interferometer for Refractive Index Measurements with Limited Cross-Sensitivity
PublicationThis work discusses sensing properties of a long-period grating (LPG) and microcavity in-line Mach–Zehnder interferometer (µIMZI) when both are induced in the same single-mode optical fiber. LPGs were either etched or nanocoated with aluminum oxide (Al2O3) to increase its refractive index (RI) sensitivity up to ≈2000 and 9000 nm/RIU, respectively. The µIMZI was machined using a femtosecond laser as a cylindrical cavity (d = 60...
-
Combined analysis of whole human blood parameters by Raman spectroscopy and spectral-domain low-coherence interferometry
PublicationIn this article the simultaneous investigation of blood parameters by complementary optical methods, Raman spectroscopy and spectral-domain low-coherence interferometry, is presented. Thus, the mutual relationship between chemical and physical properties may be investigated, because low-coherence interferometry measures optical properties of the investigated object, while Raman spectroscopy gives information about its molecular...
-
Low-coherence method of hematocrit measurement
PublicationDuring the last thirty years low-coherence measurement methods have gained popularity because of their unique advantages. Low-coherence interferometry, low-coherence reflectometry and low-coherence optical tomography offer resolution and dynamic range of measurement at the range of classical optical techniques. Moreover, they enable measurements of the absolute value of the optical path differences, which is still an unsolved problem...
-
Application of the Fractional Fourier Transform for dispersion compensation in signals from a fiber-based Fabry-Perot interferometer
PublicationOptical methods of measurement do not require contact of a probe and the object under study, and thus have found use in a broad range of applications such as nondestructive testing (NDT), where noninvasive measurement is crucial. Measuring the refractive index of a material can give a valuable insight into its composition. Low‑coherence radiation sources enable measurement of the sample’s properties across a wide spectrum, while...
-
RAMAN DIAGNOSTICS OF CVD DIAMOND GROWTH
PublicationDevelopment of Raman spectroscopic system for diagnostics of growth of diamond and BDD (Boron- Doped-Diamond) thin films during μPA CVD (Microwave Plasma Assisted Chemical Vapour Deposition) process is described. Raman studies of such films were carried out as in-situ monitoring of film deposition as ex-situ measurements conducted for a sample outside the reaction vessel after manufacturing process. Modular system for the in-situ...
-
Investigation of optical properties of Infitec and Active Stereo stereoscopic techniques for CAVE-type virtual reality systems
PublicationIn recent years, many scientific and industrial centres in the world developed virtual reality systems or laboratories. At present, among the most advanced virtual reality systems are CAVE-type (Cave Automatic Virtual Environment) installations. Such systems usually consist of four, five, or six projection screens arranged in the form of a closed or hemi-closed space. The basic task of such systems is to ensure the effect of user...
-
Application of thin diamond films in low-coherence fiber-optic Fabry Pérot displacement sensor
PublicationThe novel fiber-optic low coherence sensor with thin diamond films is demonstrated. The undoped and boron-doped diamond films were elaborated by the use of the microwave plasma enhanced chemical vapor deposition (μPE CVD) system. The optical signal from the Fabry–Pérot cavity made with the application of those thin films is sensitive to displacement. The sensor characterization was made in the range of 0–600 μm. The measurements...
-
Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering
PublicationWe present an alternative to the conventional approach, phantoms without scattering nanoparticles, where scattering is achieved by the material itself: spherical cavities trapped in a silicone matrix. We describe the properties and fabrication of novel optical phantoms based on a silicone elastomer polydimethylsiloxane (PDMS) and glycerol mixture. Optical properties (absorption coefficient µa, reduced scattering coefficient µs',...
-
INFLUENCE OF SOLID PARTICLE CONTAMINATION ON THE WEAR PROCESS IN WATER LUBRICATED MARINE STRUT BEARINGS WITH NBR AND PTFE BUSHES
PublicationThis paper reports on a study of the influence of solid particle contamination on the wear process in water-lubricated slide bearings (steel-acrylonitrile-butadiene rubber (NBR) and steel- polytetrafluoroethylene (PTFE)). To compare the wear of the shaft journal and bushes (NBR and PTFE) when lubricated with fresh water and contaminated water, an experiment was carried out to identify key factors that influence the state of wear...
-
Determination of refractive index dispersion using fiber-optic low-coherence Fabry–Perot interferometer: implementation and validation
PublicationWe present the implementation and validation of low-coherence Fabry–Perot interferometer for refractive index dispersion measurements of liquids. A measurement system has been created with the use of four superluminescent diodes with different optical parameters, a fiber-optic coupler and an optical spectrum analyzer. The Fabry–Perot interferometer cavity has been formed by the fiber-optic end and mirror surfaces mounted on a micromechanical...
-
Response of a fiber-optic Fabry-Pérot interferometer to refractive index and absorption changes – modelling and experiments
PublicationThis paper describes how the refractive index and the absorption of investigated substances change the spectrum of the optical radiation at the output of the fiber-optic Fabry-Pérot interferometer. The modeling of the operation of the interferometer takes into account not only the spectra of the refractive index and the absorption of the medium that is inside the cavity, but also spectra of the refractive indices of the core and...
-
Application of two-dimensional intensity maps in high-accuracy polarimetry
PublicationWe propose the analysis of 2D intensity contour maps which is based on the optical transmission function for the polarizer-specimen-analyzer system. A small modification of the high-accuracy universal polarimeter (HAUP) technique was used to measure the intensity maps (HAUP maps) and determine the phase retardation, linear dichroism (LD) parameters, and multiple light reflection contribution in uniaxial crystals. We have performed...
-
Low-coherence sensors with nanolayers for biomedical sensing
PublicationIn this paper, we describe the fiber optic low-coherence sensors using thin film. We investigated their metrological parameters. Presented sensors were made with the use of standard telecommunication single mode optical fiber (SMF28). Different materials were applied to obtain thick layers, such as boron doped diamond, silver and gold. The thickness of layers used in the experiments ranged from 100 nm to 300 nm. Measurements were...
-
Fracture surface topography measurements analysis of low-alloyed corrosion resistant steel after bending-torsion fatigue tests
PublicationIn this paper, an assessment of a topography measurement method for fracture surfaces of 10HNAP steel after bending-torsion fatigue tests was performed. Surface roughness was measured by using a non-contact Focus Variation Microscopy (FVM) technique in which the non-measured points (NMPs) and outliers (spikes) were removed by the application of general methods. The results revealed, that the optical measurement method introduced...
-
The In-Depth Studies of Pulsed UV Laser-Modified TiO2 Nanotubes: The Influence of Geometry, Crystallinity, and Processing Parameters
PublicationThe laser processing of the titania nanotubes has been investigated in terms of morphology, structure, and optical properties of the obtained material. The length of the nanotubes and crystallinity, as well as the atmosphere of the laser treatment, were taken into account. The degree of changes of the initial geometry of nanotubes were checked by means of scanning electron microscopy, which visualizes both the surface and the cross-section....
-
The impact of surface slope and calculation resolution on the fractal dimension for fractures of steels after bending-torsion fatigue
PublicationThe article presents the results of the fractal dimension measurements on the fatigue fracture surfaces of 10HNAP and S355J2 steels specimens after combined bending-torsion fatigue. For smooth and ring-notched specimens, three loading conditions were analyzed: (1) bending; (2) bending-torsion; and (3) torsion fatigue. Post-failure surface topography measurements were carried out on the entire fracture surfaces using an optical...
-
Magnetic field mapping along a NV-rich nanodiamond-doped fiber
PublicationIntegration of NV−-rich diamond with optical fibers enables guiding quantum information on the spin state of the NV− color center. Diamond-functionalized optical fiber sensors have been demonstrated with impressive sub-nanotesla magnetic field sensitivities over localized magnetic field sources, but their potential for distributed sensing remains unexplored. The volumetric incorporation of diamonds into the optical fiber core allows...
-
Induction of chirality in 4,4'-azopyridine by halogen-bonding interaction with optically active ditopic donors
PublicationOptically active ditopic halogen bond donors bearing two 4-iodotetrafluorophenyl groups were obtained by reaction of chiral diols with iodopentafluorobenzene. Co-crystallization of these donors with anti-4,4′-azopyridine afforded binary complexes containing infinite chains of the alternating component molecules connected by halogen bonds. The solid state CD measurements confirmed that complexation induces optical activity of the...
-
Non-invasive blood glucose monitoring with Raman spectroscopy: prospects for device miniaturization
PublicationThe number of patients with diabetes has reached over 350 million, and still continues to increase. The need for regular blood glucose monitoring sparks the interest in the development of modern detection technologies. One of those methods, which allows for noninvasive measurements, is Raman spectroscopy. The ability of infrared light to penetrate deep into tissues allows for obtaining measurements through the skin without its...
-
Fractal dimension for bending–torsion fatigue fracture characterisation
PublicationFracture surfaces after biaxial fatigue tests were compared using fractal dimension for three types of metallic materials in smooth and notched specimens made of S355J2 and 10HNAP steels and 2017-T4 aluminium alloy, considering both proportional and nonproportional cyclic loading. High-resolution optical 3D measurement studies were performed on the entire fracture surface. A direct correlation between fractal dimension and fatigue...
-
Physical properties of homogeneous TiO2 films prepared by high power impulse magnetron sputtering as a function of crystallographic phase and nanostructure
PublicationOptical, photo-electrochemical, crystallographic and morphological properties of TiO2 thin films prepared by high power impulse magnetron sputtering at low substrate temperatures (<65 ◦C) without post-deposition thermal annealing are studied. The film composition-anatase, rutile or amorphous TiO2-is adjusted by the pressure (p ∼ 0.75-15 Pa) in the deposition chamber. The different crystallographic phases were determined with grazing...
-
The new version of contact-less method for localisation of catenary contact wire – theoretical assumption
PublicationThis article presents the theoretical basic of a new version of contact-less method for localising the catenary contact wires, using the advanced video techniques and image analysis. So far, contact line diagnostic systems exploited nowadays uses the contact measuring methods with special design current collector. This solutions make it impossible to measure the contact line geometry in a static way. The proposed measurement method...
-
Non-invasive investigation of a submerged medieval harbour, a case study from Puck Lagoon
PublicationThis study presents an innovative approach to underwater archaeological prospection using non-invasive methods of seabed exploration. The research focuses on the Puck medieval harbour, a cultural heritage site, and utilises acoustic and optical underwater remote-sensing technology. The primary objectives include optimising the use of Airborne Laser Bathymetry in underwater archaeology, enhancing the filtration process for mapping...
-
Review of the Usefulness of Various Rotational Seismometers with Laboratory Results of Fibre-Optic Ones Tested for Engineering Applications
PublicationStarting with descriptions of rotational seismology, areas of interest and historical field measurements, the fundamental requirements for rotational seismometers for seismological and engineering application are formulated. On the above basis, a review of all existing rotational seismometers is presented with a description of the principles of their operation as well as possibilities to fulfill formulated requirements. This review...