Filters
total: 2354
filtered: 1796
-
Catalog
Chosen catalog filters
displaying 1000 best results Help
Search results for: artificial neural networks
-
Determination of the impact indicators of electromagnetic interferences on computer information systems
Publication -
Effects of chronic neuroleptic treatment on dopamine release: Insights from studies using 3-methoxytyramine
Publication -
Poor evidence for depolarization block but uncoupling of nigral from striatal dopamine metabolism after chronic haloperidol treatment in the rat
Publication -
Modeling human thinking about similarities by neuromatrices in the perspective of fuzzy logic
Publication -
Behavioral state classification in epileptic brain using intracranial electrophysiology
PublicationOBJECTIVE: Automated behavioral state classification can benefit next generation implantable epilepsy devices. In this study we explored the feasibility of automated awake (AW) and slow wave sleep (SWS) classification using wide bandwidth intracranial EEG (iEEG) in patients undergoing evaluation for epilepsy surgery. APPROACH: Data from seven patients (age [Formula: see text], 4 women) who underwent intracranial depth electrode...
-
Analysis of the Capability of Deep Learning Algorithms for EEG-based Brain-Computer Interface Implementation
PublicationMachine learning models have received significant attention for their exceptional performance in classifying electroencephalography (EEG) data. They have proven to be highly effective in extracting intricate patterns and features from the raw signal data, thereby contributing to their success in EEG classification tasks. In this study, we explore the possibilities of utilizing contemporary machine learning algorithms in decoding...
-
Analyzing the Effectiveness of the Brain–Computer Interface for Task Discerning Based on Machine Learning
PublicationThe aim of the study is to compare electroencephalographic (EEG) signal feature extraction methods in the context of the effectiveness of the classification of brain activities. For classification, electroencephalographic signals were obtained using an EEG device from 17 subjects in three mental states (relaxation, excitation, and solving logical task). Blind source separation employing independent component analysis (ICA) was...
-
Hydrological Excitations of Polar Motion Derived from Different Variables of Fgoals − g2 Climate Model
Publication -
Scheduling with Complete Multipartite Incompatibility Graph on Parallel Machines: Complexity and Algorithms
PublicationIn this paper, the problem of scheduling on parallel machines with a presence of incompatibilities between jobs is considered. The incompatibility relation can be modeled as a complete multipartite graph in which each edge denotes a pair of jobs that cannot be scheduled on the same machine. The paper provides several results concerning schedules, optimal or approximate with respect to the two most popular criteria of optimality:...
-
Creation of Hydrogen Bonded 1D Networks by Cocrystallization of N,N`-bis(2-pyridyl) aryldiamines with Dicarboxylic Acids.Tworzenie 1D sieci krystalicznych poprzez kokrystalizację N,N` -bis(2-piry- dylo) arylodiamin z kwasami dikarboksylowymi.
PublicationZsyntetyzowano szereg N,N`-bis(2-pirydylo) arylodiamin, a następnie otrzymano serię kompleksów w/w amin z kwasami dikarboksylowymi oraz kwasem kwadratowym w postaci monokryształów. Jednostki N,N`-bis(2-pirydylo) arylodiamin i kwasy dikarboksylowe oddziaływują ze sobą poprzez wiązania wodorowe tworząc ośmioczłonowy cykliczny układ. W kompleksach 1:1 cząsteczki układają się w jedno-wymiarową sieć krystaliczną tworzoną przy udziale...
-
Fusion-based Representation Learning Model for Multimode User-generated Social Network Content
PublicationAs mobile networks and APPs are developed, user-generated content (UGC), which includes multi-source heterogeneous data like user reviews, tags, scores, images, and videos, has become an essential basis for improving the quality of personalized services. Due to the multi-source heterogeneous nature of the data, big data fusion offers both promise and drawbacks. With the rise of mobile networks and applications, UGC, which includes...
-
Embedded Representations of Wikipedia Categories
PublicationIn this paper, we present an approach to building neural representations of the Wikipedia category graph. We test four different methods and examine the neural embeddings in terms of preservation of graphs edges, neighborhood coverage in representation space, and their influence on the results of a task predicting parent of two categories. The main contribution of this paper is application of neural representations for improving the...
-
Communication as a Factor Limiting University-Business Cooperation
PublicationObjective - Despite the broad extent of the scientific activity dealing with university-business cooperation, Poland has yet to develop a satisfactory cooperation strategy that takes business needs into account. This issue is still relevant due to the need for continuous improvement and resulting benefits aimed at improving enterprise competitiveness. Methodology/Technique - Authors of this article attempt to select an overriding...
-
COVID-19 severity forecast based on machine learning and complete blood count data
PublicationProper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose...
-
COVID-19 severity forecast based on machine learning and complete blood count data
PublicationProper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose...
-
Investigating Feature Spaces for Isolated Word Recognition
PublicationThe study addresses the issues related to the appropriateness of a two-dimensional representation of speech signal for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and time-frequency signal representation converted to the investigated feature spaces. In particular, waveforms and fractal dimension features of the signal were chosen for the time domain, and...
-
Data Acquisition and Processing for GeoAI Models to Support Sustainable Agricultural Practices
PublicationThere are growing opportunities to leverage new technologies and data sources to address global problems related to sustainability, climate change, and biodiversity loss. The emerging discipline of GeoAI resulting from the convergence of AI and Geospatial science (Geo-AI) is enabling the possibility to harness the increasingly available open Earth Observation data collected from different constellations of satellites and sensors...
-
Deep Features Class Activation Map for Thermal Face Detection and Tracking
PublicationRecently, capabilities of many computer vision tasks have significantly improved due to advances in Convolutional Neural Networks. In our research, we demonstrate that it can be also used for face detection from low resolution thermal images, acquired with a portable camera. The physical size of the camera used in our research allows for embedding it in a wearable device or indoor remote monitoring solution for elderly and disabled...
-
Optimized Deep Learning Model for Flood Detection Using Satellite Images
PublicationThe increasing amount of rain produces a number of issues in Kerala, particularly in urban regions where the drainage system is frequently unable to handle a significant amount of water in such a short duration. Meanwhile, standard flood detection results are inaccurate for complex phenomena and cannot handle enormous quantities of data. In order to overcome those drawbacks and enhance the outcomes of conventional flood detection...
-
Underground Water Level Prediction in Remote Sensing Images Using Improved Hydro Index Value with Ensemble Classifier
PublicationThe economic sustainability of aquifers across the world relies on accurate and rapid estimates of groundwater storage changes, but this becomes difficult due to the absence of insitu groundwater surveys in most areas. By closing the water balance, hydrologic remote sensing measures offer a possible method for quantifying changes in groundwater storage. However, it is uncertain to what extent remote sensing data can provide an...
-
MAC contention in a wireless LAN with noncooperative anonymous stations
PublicationRozpatruje się model sieci bezprzewodowej wykorzystywanej przez wzajemnie nieprzenikalne grupy stacji anonimowych. Przy ustalonej regule wyłaniania zwycięzcy rywalizacji o dostęp do medium, stacje posiadają swobodę wyboru strategii selekcji szczeliny rywalizacyjnej. Dla szerokiego zbioru możliwych strategii proponuje się metodologię ich oceny i testowania wydajności opartą na pojęciu zbliżonym do ewolucyjnej stabilności.
-
Design of a Coplanar Waveguide-Fed Wideband Compact-Size Circularly Polarized Antenna and polarization-sense alteration
PublicationThis paper presents the design and validation of a geometrically simple circularly polarized(CP) structure featuring flat gain in the sub-6 GHz 5th generation spectrum. The proposed structure is based on coplanar-waveguide-fed, modified wide slot etched in the ground plane. For generating CP waves, the coplanar ground planes are designed with slight asymmetry in both the horizontal and vertical directions. Furthermore, the ground...
-
Circularly Polarized Antenna Array design with the Potential of Gain-Size Trade-off and Omnidirectional Radiation for Millimeter-Wave Small Base Station Applications
PublicationThis paper presents the design and validation of a slot-patch-hybrid circularly polarized antenna array for 28 GHz millimeter (mm) wave (mm-wave) applications. The proposed design has a simple geometry that facilitates the fabrication process, which is otherwise a challenging task due to the sub-mm dimensions of the circuit in the mm-wave band. In the proposed structure, aperture-coupled series slot-fed array is utilized to excite...
-
High frequency oscillations in human memory and cognition: a neurophysiological substrate of engrams?
PublicationDespite advances in understanding the cellular and molecular processes underlying memory and cognition, and recent successful modulation of cognitive performance in brain disorders, the neurophysiological mechanisms remain underexplored. High frequency oscillations beyond the classic electroencephalogram spectrum have emerged as a potential neural correlate of fundamental cognitive processes. High frequency oscillations are detected...
-
Integrating Experience-Based Knowledge Representation and Machine Learning for Efficient Virtual Engineering Object Performance
PublicationMachine learning and Artificial Intelligence have grown significant attention from industry and academia during the past decade. The key reason behind interest is such technologies capabilities to revolutionize human life since they seamlessly integrate classical networks, networked objects and people to create more efficient environments. In this paper, the Knowledge Representation technique of Set of Experience...
-
Autonomous pick-and-place system based on multiple 3Dsensors and deep learning
PublicationGrasping objects and manipulating them is the main way the robot interacts with its environment. However, for robots to operate in a dynamic environment, a system for determining the gripping position for objects in the scene is also required. For this purpose, neural networks segmenting the point cloud are usually applied. However, training such networks is very complex and their results are unsatisfactory. Therefore, we propose...
-
Autonomous Perception and Grasp Generation Based on Multiple 3D Sensors and Deep Learning
PublicationGrasping objects and manipulating them is the main way the robot interacts with its environment. However, for robots to operate in a dynamic environment, a system for determining the gripping position for objects in the scene is also required. For this purpose, neural networks segmenting the point cloud are usually applied. However, training such networks is very complex and their results are unsatisfactory. Therefore, we propose...
-
MobileNet family tailored for Raspberry Pi
PublicationWith the advances in systems-on-a-chip technologies, there is a growing demand to deploy intelligent vision systems on low-cost microcomputers. To address this challenge, much of the recent research has focused on reducing the model size and computational complexity of contemporary convolutional neural networks (CNNs). The state-of-the-art lightweight CNN is MobileNetV3. However, it was designed to achieve a good trade-off between...
-
How to Sort Them? A Network for LEGO Bricks Classification
PublicationLEGO bricks are highly popular due to the ability to build almost any type of creation. This is possible thanks to availability of multiple shapes and colors of the bricks. For the smooth build process the bricks need to properly sorted and arranged. In our work we aim at creating an automated LEGO bricks sorter. With over 3700 different LEGO parts bricks classification has to be done with deep neural networks. The question arises...
-
Playback detection using machine learning with spectrogram features approach
PublicationThis paper presents 2D image processing approach to playback detection in automatic speaker verification (ASV) systems using spectrograms as speech signal representation. Three feature extraction and classification methods: histograms of oriented gradients (HOG) with support vector machines (SVM), HAAR wavelets with AdaBoost classifier and deep convolutional neural networks (CNN) were compared on different data partitions in respect...
-
Performance improvement of NN based RTLS by customization of NN structure - heuristic approach
PublicationThe purpose of this research is to improve performance of the Hybrid Scene Analysis – Neural Network indoor localization algorithm applied in Real-time Locating System, RTLS. A properly customized structure of Neural Network and training algorithms for specific operating environment will enhance the system’s performance in terms of localization accuracy and precision. Due to nonlinearity and model complexity, a heuristic analysis...
-
Optimal detection observers based on eigenstructure assignment. W: FaultDiagnosis. Models, artificial intelligence, applications. Ed. J. Korbicz, J.M. Kościelny, Z. Kowalczuk, W. Cholewa. Berlin: Springer Verlag**2004 s. 219-259, 7 rys. bibliogr. 41 poz. Optymalne obseratory detekcyjne oparte na strukturze własnej.
PublicationPraca dotyczy analitycznych metod syntezy algorytmów detekcji uszkodzeń. De-finiując wektor resztowy jako ważony błąd uzyskanej oceny wyjścia danego o-biektu, poszukuje się takich obserwatorów stanu, dostarczających owych osza-cowań, dla których wektor resztowy jest w możlwie wysokim stopniu niezależnyod niemierzalnych zakłóceń oddziałujących na obiekt oraz od niemierzalnychszumów w torach pomiarowych. Rozważa się algorytmy...
-
Society 4.0: Issues, Challenges, Approaches, and Enabling Technologies
PublicationThis guest edition of Cybernetics and Systems is a broadening continuation of our last year edition titled “Intelligence Augmentation and Amplification: Approaches, Tools, and Case Studies”. This time we cover research perspective extending towards what is known as Society 4.0. Bob de Vit brought the concept of Society 4.0 to life in his book “Society 4.0 – resolving eight key issues to build a citizens society”. From the Systems...
-
Performance Analysis of the OpenCL Environment on Mobile Platforms
PublicationToday’s smartphones have more and more features that so far were only assigned to personal computers. Every year these devices are composed of better and more efficient components. Everything indicates that modern smartphones are replacing ordinary computers in various activities. High computing power is required for tasks such as image processing, speech recognition and object detection. This paper analyses the performance of...
-
Automatic Emotion Recognition in Children with Autism: A Systematic Literature Review
PublicationThe automatic emotion recognition domain brings new methods and technologies that might be used to enhance therapy of children with autism. The paper aims at the exploration of methods and tools used to recognize emotions in children. It presents a literature review study that was performed using a systematic approach and PRISMA methodology for reporting quantitative and qualitative results. Diverse observation channels and modalities...
-
Predictions of cervical cancer identification by photonic method combined with machine learning
PublicationCervical cancer is one of the most commonly appearing cancers, which early diagnosis is of greatest importance. Unfortunately, many diagnoses are based on subjective opinions of doctors—to date, there is no general measurement method with a calibrated standard. The problem can be solved with the measurement system being a fusion of an optoelectronic sensor and machine learning algorithm to provide reliable assistance for doctors...
-
Runge-Kutta bicharacteristic methods for first order partial functional di- fferential equations
PublicationW pracy prezentujemy nową klasę metod numerycznych dla równań różniczkowo-funkcyjnych. Są to metody bicharakterystyk Rungego-Kutty. Ponadto porównuje-my wprowadzone metody z metodami klasycznymi.
-
Badanie i analiza efektywności alokacji strumieni danych w heterogenicznej sieci WBAN
PublicationW niniejszej dysertacji doktorskiej poddano dyskusji efektywność alokacji strumieni danych w heterogenicznej radiowej sieci WBAN (Wireless Body Area Networks). Biorąc pod uwagę dynamiczny rozwój nowoczesnych sieci radiokomunikacyjnych piątej generacji (5G), którego część stanowią radiowe sieci działające w obrębie ciała człowieka, bardzo ważnym aspektem są metody maksymalizujące wykorzystanie dostępnych zasobów czasowo –częstotliwościowych...
-
Impact of R/X ratio of distribution network on selection and control of energy storage units
PublicationThe interest in energy storage is still increasing. Energy storage units are installed in high voltage networks, medium voltage networks and low voltage distribution networks as well. These units are often used to improve power quality. One of the criteria for improving power quality is reducing voltage deviations. Depending on the type of network and specifying its R/X ratio, this criterion can be fulfilled by control of active...
-
Sensory Characteristics of Tonic Waters with Various Sweetening Substances vs Young Consumers' Opinion
PublicationThe attitude of young consumers towards food products containing low calorie sweeteners was analyzed as well as consumers’ awareness to the medical recommendations regarding artificial sweeteners. The questionnaire was carried out within the group of 97 respondents at the age of 21 – 30. Strongly negative attitude towards consumption of food products containing low calorie sweeteners was declared by almost half of respondents....
-
A new multi-process collaborative architecture for time series classification
PublicationTime series classification (TSC) is the problem of categorizing time series data by using machine learning techniques. Its applications vary from cybersecurity and health care to remote sensing and human activity recognition. In this paper, we propose a novel multi-process collaborative architecture for TSC. The propositioned method amalgamates multi-head convolutional neural networks and capsule mechanism. In addition to the discovery...
-
The Influence of Selecting Regions from Endoscopic Video Frames on The Efficiency of Large Bowel Disease Recognition Algorithms
PublicationThe article presents our research in the field of the automatic diagnosis of large intestine diseases on endoscopic video. It focuses on the methods of selecting regions of interest from endoscopic video frames for further analysis by specialized disease recognition algorithms. Four methods of selecting regions of interest have been discussed: a. trivial, b. with the deletion of characteristic, endoscope specific additions to the...
-
Computed aided system for separation and classification of the abnormal erythrocytes in human blood
PublicationThe human peripheral blood consists of cells (red cells, white cells, and platelets) suspended in plasma. In the following research the team assessed an influence of nanodiamond particles on blood elements over various periods of time. The material used in the study consisted of samples taken from ten healthy humans of various age, different blood types and both sexes. The markings were leaded by adding to the blood unmodified...
-
Prognostic and diagnostic capabilities of OOBN in assessing investment risk of complex construction projects
PublicationModelling decision problems using Bayesian networks is extremely valuable especially in case of issues related to uncertainty; it is also very helpful in constructing and understanding visual representation of the elements and their relations. This approach facilitates subsequent application of Bayesian networks, however there can be situations where using simple Bayesian networks is impractical or even ineffective. The aim of...
-
A Test-Bed Analysis of Simultaneous PMIPv6 Handover in 802.11 WLANs Environment
PublicationProviding mobility in access networks is a challenge that we have to deal with. Due to networks’ convergence and migration to all-IP networks, mobility management at the network layer is required. However, there is a need for cooperation mechanisms between the network layer and lower layers to support multimedia services and make handover more efficient. This paper presents experimental research on simultaneous handover performance...
-
Electronic Noses and Electronic Tongues
PublicationChapter 7 reports the achievements on the field of artificial senses, such as electronic nose and electronic tongue. It examines multivariate data processing methods and demonstrates a promising potential for rapid routine analysis. Main attention is focused on detailed description of sensor used, construction and principle of operation of these systems. A brief review about the progress in the field of artificial senses and future trends...
-
Future research directions in design of reliable communication systems
PublicationIn this position paper on reliable networks, we discuss new trends in the design of reliable communication systems. We focus on a wide range of research directions including protection against software failures as well as failures of communication systems equipment. In particular, we outline future research trends in software failure mitigation, reliability of wireless communications, robust optimization and network design, multilevel...
-
Problems of modelling toxic compounds emitted by a marine internal combustion engine for the evaluation of its structure parameters
PublicationThe paper presents the possibility of using an analytical study of the engine exhaust ignition to evaluate the technical condition of the selected components. Software tools available for the analysis of experimental data commonly use multiple regression model that allows the study of the effects and iterations between model input quantities and one output variable. The use of multi-equation models gives a lot of freedom in the...
-
Investigating Feature Spaces for Isolated Word Recognition
PublicationMuch attention is given by researchers to the speech processing task in automatic speech recognition (ASR) over the past decades. The study addresses the issue related to the investigation of the appropriateness of a two-dimensional representation of speech feature spaces for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and timefrequency signal representation...
-
LOS and NLOS identification in real indoor environment using deep learning approach
PublicationVisibility conditions between antennas, i.e. Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) can be crucial in the context of indoor localization, for which detecting the NLOS condition and further correcting constant position estimation errors or allocating resources can reduce the negative influence of multipath propagation on wireless communication and positioning. In this paper a deep learning (DL) model to classify LOS/NLOS...