Filters
total: 134
filtered: 122
-
Catalog
Chosen catalog filters
Search results for: CVD DIAMOND, MICROWAVE PLASMA,
-
Enhanced boron doping of thin diamond films grown in deuterium-rich microwave plasma
PublicationThe boron-doped diamond thin films were growth in deuterium rich microwave plasma in CVD process. The mechanism of influence of plasma composition on boron doping level was studied using optical emission spectroscopy. Deuterium rich plasma results in an increased dissociation of B2H6 precursor and intense boron-radicals' production. In consequence, a higher doping level of diamond films was observed by means of Laser Induced Breakdown...
-
Novel Functionalization of Boron-Doped Diamond by Microwave Pulsed-Plasma Polymerized Allylamine Film
PublicationWe report the novel modification of a hydrogen-terminated polycrystalline boron-doped electrode with a microwave pulsed-plasma polymerized allylamine. Boron-doped diamond (BDD) was coated with a very thin layer of adherent cross-linked, pinhole- and additive-free allylamine plasma polymer (PPAAm) resistant to hydrolysis and delamination and characterized by a high density of positively charged amino groups. The pulsed microwave...
-
Ellipsometric investigation of nitrogen doped diamond thin films grown in microwave CH4/H2/N2 plasma enhanced chemical vapor deposition
PublicationThe influence of N2 concentration (1%–8%) in CH4/H2/N2 plasma on structure and optical properties of nitrogen doped diamond (NDD) films was investigated. Thickness, roughness, and optical properties of the NDD films in the VIS–NIR range were investigated on the silicon substrates using spectroscopic ellipsometry. The samples exhibited relatively high refractive index (2.6 6 0.25 at 550 nm) and extinction coefficient (0.05 6 0.02...
-
RAMAN DIAGNOSTICS OF CVD DIAMOND GROWTH
PublicationDevelopment of Raman spectroscopic system for diagnostics of growth of diamond and BDD (Boron- Doped-Diamond) thin films during μPA CVD (Microwave Plasma Assisted Chemical Vapour Deposition) process is described. Raman studies of such films were carried out as in-situ monitoring of film deposition as ex-situ measurements conducted for a sample outside the reaction vessel after manufacturing process. Modular system for the in-situ...
-
Optoelectronic system for investigation of cvd diamond/DLC layers growth
PublicationDevelopment of the optoelectronic system for non-invasive monitoring of diamond/DLC (Diamond-Like-Carbon) thin films growth during μPA ECR CVD (Microwave Plasma Assisted Electron Cyclotron Resonance Chemical Vapour Deposition) process is described. The system uses multi-point Optical Emission Spectroscopy (OES) and long-working-distance Raman spectroscopy. Dissociation of H2 molecules, excitation and ionization of hydrogen atoms...
-
Influence of B/N co-doping on electrical and photoluminescence properties of CVD grown homoepitaxial diamond films
PublicationBoron doped diamond (BDD) has great potential in electrical, and electrochemical sensing applications. The growth parameters, substrates, and synthesis method play a vital role in the preparation of semiconducting BDD to metallic BDD. Doping of other elements along with boron (B) into diamond demonstrated improved efficacy of B doping and exceptional properties. In the present study, B and nitrogen (N) co-doped diamond has been...
-
Nucleation and growth of CVD diamond on fused silica optical fibres with titanium dioxide interlayer
PublicationNucleation and growth processes of thin diamond films on fused silica optical fibres have been investigated. Fibres were coated with diamond film using microwave plasma enhanced chemical vapour deposition (µPE CVD) system. Since the growth of diamond on the fused silica glass requires high seeding density, two types of glass pre-treatment were applied: titanium dioxide (TiO2) interlayer deposition and sonication in nanodiamond...
-
Optimization of Polycrystalline CVD Diamond Seeding with the Use of sp³/sp² Raman Band Ratio
PublicationThe influence of various nanodiamond colloids used for seeding nondiamond substrates in microwave plasma enhanced chemical vapour deposition diamond process was investigated. Colloids based on deionized water, isopropanol alcohol and dimethyl sulfoxide (DMSO) were used with different grain size dispersion: 150, 400 and 35 nm, respectively. The influence of growth time was also taken into consideration and bias enhanced nucleation....
-
Low temperature growth of diamond films on optical fibers using Linear Antenna CVD system
PublicationIt is not trivial to achieve a good quality diamond-coated fibre interface due to a large difference in the properties and composition of the diamond films (or use coating even) and the optical fibre material, i.e. fused silica. One of the biggest problems is the high temperature during the deposition which influences the optical fibre or optical fibre sensor structure (e.g. long-period gratings (LPG)). The greatest advantage of...
-
Enhanced electrochemical kinetics of highly-oriented (111)-textured boron-doped diamond electrodes induced by deuterium plasma chemistry
PublicationNovel highly-oriented (111)-textured boron-doped diamond electrodes (BDDD) featuring high electrochemical activity and electrode stability toward electrochemical analytics were fabricated by deuterium-rich microwave plasma CVD. The high flux deuterium plasma-induced preferential formation of (111)-faceted diamond as revealed by XRD. The highly-oriented diamond surface exhibited improved boron dopant incorporation and activation,...
-
Spatial characterization of H 2: CH 4 dissociation level in microwave ECR plasma source by fibre-optic OES
PublicationSpatially resolved optical emission spectroscopy (SR-OES) was used to investigate microwave activated H2/Ar/CH4 plasma under conditions of the electron cyclotron resonance (ECR). The chemistry and composition of the gas phase were studied using self-designed fibre-optic system with echelle type spectrometer during CVD deposition of polycrystalline diamond. One-dimensional intensity profiles of the main species were collected along...
-
Optical and structural properties of polycrystalline CVD diamond films grown on fused silica optical fibres pre-treated by high-power sonication seeding
PublicationIn this paper, the growth of polycrystalline chemical vapour deposition (CVD) diamond thin films on fused silica optical fibres has been investigated. The research results show that the effective substrate seeding process can lower defect nucleation, and it simultaneously increases surface encapsulation. However, the growth process on glass requires high seeding density. The effects of suspension type and ultrasonic power were...
-
Optical properties of boron-doped nanocrystalline diamond films studied by spectroscopic ellipsometry
PublicationThe optical properties of boron-doped nanocrystalline diamond films, coated using Microwave Plasma Enhanced Chemical Vapour Deposition (μPE CVD) system, were analyzed by spectroscopic ellipsometry. Diamond films were deposited on silicon substrates. The ellipsometry data (refractive index (n(λ)), extinction coefficient (k(λ)) were modeled using dedicated software. Evolution of the optical structure with boron doping was observed...
-
Long-working-distance Raman system for monitoring of uPA ECR CVD process of thin diamond/DLC layers growth
PublicationW artykule przedstawiono konstrucję systemu optoelektronicznego do monitoringu ramanowskiego in-situ procesu μPA ECR CVD (ang.: Microwave Plasma Assisted Electron Cyclotron Resonance Chemical Vapour Deposition), stosowanego do osadzania cienkich warstw diamentowych i diamentopodobnych DLC. System ma budowę modułową i wyposażony jest w dedykowane sondy optyczne. Przedstawiono wyniki pomiarów testowych, potwierdzjące, że system posiada...
-
Nanocrystalline CVD Diamond Coatings on Fused Silica Optical Fibres: Optical Properties Study
Publicationpre-treatment by dip coating in two detonation nanodiamond (DND) seeding media has been studied. The DND suspension in ethyl alcohol and dispersion of DND in dimethyl sulfoxide (DMSO) with polyvinyl alcohol (PVA) were chosen for the seeding purpose. The grain size distribution of nanodiamond particles in both seeding media was kept at the same level (approximately 1050 nm). After the seeding nanocrystalline diamond lms were deposited...
-
Growth and Isolation of Large Area Boron‐Doped Nanocrystalline Diamond Sheets: A Route toward Diamond‐on‐Graphene Heterojunction
PublicationMany material device applications would benefit from thin diamond coatings, but current growth techniques, such as chemical vapor deposition (CVD) or atomic layer deposition require high substrate and gas‐phase temperatures that would destroy the device being coated. The development of freestanding, thin boron‐doped diamond nanosheets grown on tantalum foil substrates via microwave plasma‐assisted CVD is reported. These diamond...
-
Optoelectronic system for monitoring of thin diamond layers growth
PublicationDevelopment of the optoelectronic system for monitoring of diamond/DLC (Diamond-Like-Carbon) thin films growth during mu PA ECR CVD (Microwave Plasma Assisted Electron Cyclotron Resonance Chemical Vapour Deposition) process is described. The multi-point Optical Emission Spectroscopy (OES) and Raman spectroscopy were employed as non-invasive optoelectronic tools. Dissociation of H-2 molecules, excitation and ionization of hydrogen...
-
The use of thin diamond films in fiber optic low-coherence interferometers”
PublicationIn this paper we present the use of thin diamond films in fiber-optic low-coherence interferometers. Two kinds of diamond surfaces were used: undoped diamond film and boron-doped diamond film. They were deposited on glass plates as well as silicon layers. A conventionally used mirror was used as a reference layer. Diamond films were deposited using Microwave Plasma Enhanced Chemical Vapour Deposition (μPE CVD) system. Measurements...
-
Investigation of H2:CH4 plasma composition by means of spatially resolved optical spectroscopy
PublicationThe system based on spatially resolved optical emission spectroscopy dedicated for in situ diagnostics of plasma assisted CVD processes is presented in this paper. Measurement system coupled with chemical vapour deposition chamber by dedicated fiber-optic paths enables investigation of spatial distribution of species densities (Hx, H+, CH, CH+) during chemical vapour deposition process. Experiments were performed for a various...
-
The low coherence Fabry-Pérot interferometer with diamond and ZnO layers
PublicationThe authors present a fiber-optic Fabry-Pérot interferometer built with the application of diamond and zinc oxide (ZnO) thin layers. Thin ZnO films were deposited on the tip of a standard telecommunication single-mode optical fiber (SMF- 28) while the diamond layer was grown on the plate of silicon substrate. Investigated ZnO layers were fabricated by atomic layer deposition (ALD) and the diamond films were deposited using Microwave...
-
Determination of Chemical Oxygen Demand (COD) at Boron-doped Diamond (BDD) Sensor by Means of Amperometric Technique
PublicationA boron-doped diamond (BDD) sensor was proposed for effective detection of chemical oxygen demand (COD) by means of amperometric technique. Thin boron doped diamond active sensor layer was deposited on Si wafer and glassy carbon substrate by Microwave Plasma Enhanced Chemical Vapor Deposition (MW PE CVD). The structure of BDD was confirmed by Raman spectra analysis. Broad Raman bands centered at 482 cm-1 and 1219 cm-1 are typical...
-
Determination of chemical oxygen demand (cod) at boron-doped diamond (bdd) sensor by means of amperometric technique
PublicationA boron-doped diamond (BDD) sensor was proposed for effective detection of chemical oxygen demand (COD) by means of amperometric technique. Thin boron doped diamond active sensor layer was deposited on Si wafer and glassy carbon substrate by Microwave Plasma Enhanced Chemical Vapor Deposition (MW PE CVD). The structure of BDD was confirmed by Raman spectra analysis. Broad Raman bands centered at 482 cm-1 and 1219 cm-1 are typical...
-
Boron-Doped Diamond/GaN Heterojunction—The Influence of the Low-Temperature Deposition
PublicationWe report a method of growing a boron-doped diamond film by plasma-assisted chemical vapour deposition utilizing a pre-treatment of GaN substrate to give a high density of nucleation. CVD diamond was deposited on GaN substrate grown epitaxially via the molecular-beam epitaxy process. To obtain a continuous diamond film with the presence of well-developed grains, the GaN substrates are exposed to hydrogen plasma prior to deposition....
-
Application of thin diamond films in low-coherence fiber-optic Fabry Pérot displacement sensor
PublicationThe novel fiber-optic low coherence sensor with thin diamond films is demonstrated. The undoped and boron-doped diamond films were elaborated by the use of the microwave plasma enhanced chemical vapor deposition (μPE CVD) system. The optical signal from the Fabry–Pérot cavity made with the application of those thin films is sensitive to displacement. The sensor characterization was made in the range of 0–600 μm. The measurements...
-
Application of boron-doped diamond film and ZnO layer in the Fabry-Pérot interferometer
PublicationIn this article there have been presented the use of boron-doped diamond films for sensor applications. The low-finesse Fabry-Pérot interferometer working in the reflective mode has been implemented. Two kinds of reflective layers have been elaborated: boron-doped diamond thin films and zinc-oxide (ZnO) layer. Thin ZnO layers were deposited by Atomic Layer Deposition (ALD) on the face of a standard telecommunication single-mode...
-
Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films — Coating characterization and first cell biological results
PublicationAlthough titaniumand its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone....
-
Nanocrystalline diamond sheets as protective coatings for fiber-optic measurement head
PublicationFiber-optic sensors find numerous applications in science and industry, but their full potential is limited because of the risk of damaging the measurement head, in particular, due to the vulnerability of unprotected tips of the fiber to mechanical damage and aggressive chemical agents. In this paper, we report the first use of a new nanocrystalline diamond structure in a fiber-optic measurement head as a protective coating of...
-
Electrical characterization of diamond/boron doped diamond nanostructures for use in harsh environment applications
PublicationThe polycrystalline boron doped diamond (BDD) shows stable electrical properties and high tolerance for harsh environments (e.g. high temperature or aggressive chemical compounds) comparing to other materials used in semiconductor devices. In this study authors have designed electronic devices fabricated from non-intentionally (NiD) films and highly boron doped diamond structures. Presented semiconductor devices consist of highly...
-
Diamond-based protective layer for optical biosensors
PublicationOptical biosensors have become a powerful alternative to the conventional ways of measurement owing to their great properties, such as high sensitivity, high dynamic range, cost effectiveness and small size. Choice of an optical biosensor's materials is an important factor and impacts the quality of the obtained spectra. Examined biological objects are placed on a cover layer which may react with samples in a chemical, biological...
-
Optical and electrical properties of ultrathin transparent nanocrystalline boron-doped diamond electrodes
PublicationThe optical properties of ultrathin (less than 100 nm) boron-doped nanocrystalline diamond (B-NCD) film were investigated in a wavelength range of 200 ÷ 20000 nm. The B-NCD refractive index showed values close to that of monocrystalline diamond (n = 2.45) in a broad wavelength range (450 ÷ 4000 nm). A transmittance up to 70% and the average film thickness of 70 nm were achieved. A special cone-shaped shim was used in the deposition...
-
Characterization of Optical and Electrical Properties of Transparent Conductive Boron-Doped Diamond thin Films Grown on Fused Silica
PublicationA conductive boron-doped diamond (BDD) grown on a fused silica/quartz has been investigated. Diamond thin films were deposited by the microwave plasma enhanced chemical vapor deposition (MW PECVD). The main parameters of the BDD synthesis, i.e. the methane admixture and the substrate temperature were investigated in detail. Preliminary studies of optical properties were performed to qualify an optimal CVD synthesis and film parameters...
-
Local impedance imaging of boron-doped polycrystalline diamond thin films
PublicationLocal impedance imaging (LII) was used to visualise surficial deviations of AC impedances in polycrystalline boron-doped diamond (BDD). The BDD thin film electrodes were deposited onto the highly doped silicon substrates via microwave plasma-enhanced CVD. The studied boron dopant concentrations, controlled by the [B]/[C] ratio in plasma, ranged from 1 × 1016 to 2 × 1021 atoms cm−3. The BDD films displayed microcrystalline structure,...
-
Enhanced capacitance of composite TiO2 nanotube / boron-doped diamond electrodes studied by impedance spectroscopy
PublicationWe report on the novel composite nanostructures based on boron-doped diamond thin film grown on top of TiO2 nanotubes. The nanostructures made of BDD-modified titania nanotubes showed an increase in activity and performance when used as electrodes in electrochemical environments. The BDD thin films (~200-500 nm) were deposited using microwave plasma assisted chemical vapor deposition (MW PA CVD) onto anodically fabricated TiO2...
-
Fabrication and characterization of boron-doped nanocrystalline diamond-coated MEMS probes
PublicationFabrication processes of thin boron-doped nanocrystalline diamond (B-NCD) films on silicon-based micro- and nano-electromechanical structures have been investigated. Nanocrystalline boron doped -diamond (B-NCD) films were deposited using Microwave Plasma Assisted Chemical Vapour Deposition (MW PA CVD) method. The variation of B-NCD morphology, structure and optical parameters were particularly investigated. The use of truncated...
-
Tailoring the optical parameters of optical fiber interferometer with dedicated boron-doped nanocrystalline diamond thin film
PublicationOptical fiber interferometer using nanocrystalline boron-doped diamond film was investigated. The diamond films were deposited on glass plates using a Microwave Plasma-Enhanced Chemical Vapour Deposition (μPE CVD) sys-tem. The growth time was 3h, with boron doping level of 10 000 ppm producing films (B-NCD-10) of thickness ~ 200 nm. The presence of boron atoms in the diamond film is evident in Raman spectrum as peaks at 1212 cm-1...
-
Improved surface coverage of an optical fibre with nanocrystalline diamond by the application of dip-coating seeding
PublicationGrowth processes of diamond thin films on the fused silica optical fibres (10 cm in length) were investigated at various temperatures. Fused silica pre-treatment by dip-coating in a dispersion consisting of detonation nanodiamond (DND) in dimethyl sulfoxide (DMSO) with polyvinyl alcohol (PVA) was applied. Nanocrystalline diamond (NCD) films were deposited on the fibres using the microwave plasma assisted chemical vapour deposition...
-
Nanocrystalline diamond microelectrode on fused silica optical fibers for electrochemical and optical sensing
PublicationFabrication process of thin boron-doped nanocrystalline diamond (B-NCD) microelectrode on fused silica single mode optical fiber has been investigated. The B-NCD films were deposited on the fibers using Microwave Plasma Assisted Chemical Vapor Deposition (MW PA CVD) at glass substrate temperature of 475 ºC. We have obtained homogenous, continuous and polycrystalline surface morphology with the mean grain size in the range of 100-250...
-
Diamondized carbon nanoarchitectures as electrocatalytic material for sulfate-based oxidizing species electrogeneration
PublicationThe introduction of nanotechnology seems to be an imperative factor to intensify the synergic effects of electrocatalytic materials to produce strong oxidant species or to increase the active sites on their surfaces as well as to enhance the conversion yield in a fuel cell, high-added value products, electrolytic treatment for environmental protection or the detection limit in electroanalysis. Recently, a new type of 3D-diamond...
-
Application of BDD thin film electrode for electrochemical decomposition of heterogeneous aromatic compounds
PublicationThe aim of the presented study is to investigate the applicability of electrochemical oxidation of aromatic compounds containing heteroatoms, e.g. waste from production of pesticides or pharmaceutics, at a borondoped diamond (BDD) electrode. The BDD electrodes were synthesized by microwave plasma enhanced chemical vapour deposition (MW PE CVD). Investigation of the electrode surface by optical microscopy and scanning electron microscopy...
-
Opto-Electrochemical Sensing Device Based on Long-Period Grating Coated with Boron-Doped Diamond Thin Film
PublicationThe fabrication process of thin boron-doped nanocrystalline diamond (B-NCD) microelectrodes on fused silica single mode optical fiber cladding has been investigated. The B-NCD films were deposited on the fibers using Microwave Plasma Assisted Chemical Vapor Deposition (MW PA CVD) at glass substrate temperature of 475 ºC. We have obtained homogenous, continuous and polycrystalline surface morphology with high sp3 content in B-NCD...
-
Physicochemical and Mechanical Performance of Freestanding Boron-Doped Diamond Nanosheets Coated with C:H:N:O Plasma Polymer
PublicationThe physicochemical and mechanical properties of thin and freestanding heavy boron-doped diamond (BDD) nanosheets coated with a thin C:H:N:O plasma polymer were studied. First, diamond nanosheets were grown and doped with boron on a Ta substrate using the microwave plasma-enhanced chemical vapor deposition technique (MPECVD). Next, the BDD/Ta samples were covered with nylon 6.6 to improve their stability in harsh environments and...
-
Direct amination of boron-doped diamond by plasma polymerized allylamine film
PublicationA novel microwave pulsed-plasma based method for the modification of the hydrogen-terminated polycrystalline boron-doped diamond (BDD) with a thin film of polymerized allylamine (PPAAm) is reported. A modified BDD surface is resistant to hydrolysis and delamination and is characterized by a high density of positively charged amino groups. Pulsed microwave plasma was applied to improve the degree of cross-linking and bonding of...
-
Linear antenna microwave chemical vapour deposition of diamond films on long-period fiber gratings for bio-sensing applications
PublicationThe growth processes of nanocrystalline diamond (NCD) thin films on fused silica optical fibers with UV-induced long-period gratings (LPGs) were investigated with regard to biosensing applications. The films were deposited using a linear antenna microwave plasma enhanced chemical vapor deposition system, which allows for the growth of diamond at temperatures below 350°C. The films exhibited a high refractive index n = 2.32, as...
-
Seeding enhancement for microcrystaline diamond layers growth on non-diamond substrates
PublicationThe present paper gives an overview on the possible methods of seeding substrates for diamond layers growth. Diamond in reason of his properties is very desirable material in microelectronic, biomedical and waste treatment sensors. Microcrystalline diamond for these applications must be grown on silicon substrate in microwave plasma assisted chemical vapor deposition (MPACVD). To grow diamond on non-diamond surface pre-growth...
-
Al-DIAMOND SCHOTTKY TUNNEL DIODES WITH BARRIER HEIGHT CONTROL
PublicationFew-nanometer-thick very highly boron-doped p-type layers were fabricated at metal-semiconductor interfaces of Schottky barrier diodes formed with aluminum on polycrystalline diamond. Preliminary results show that hermionically-assisted tunneling mechanism results in lower voltage drops at forward biasing of these diodes than expected for the Al-diamond metal-semiconductor potential barrier B. The effective barrier height Bpeff...
-
Diamond Structures for Tuning of the Finesse Coefficient of Photonic Devices
PublicationFinesse coefficient is one of the most important parameters describing the properties of a resonant cavity. In this research, a mathematical investigation of the application of diamond structures in a fiber-optic Fabry–Perot measurement head to assess their impact on the finesse coefficient is proposed. We present modeled transmission functions of cavities utilizing a nitrogen-doped diamond, a boron-doped diamond, nanocrystalline...
-
Charge-based deep level transient spectroscopy of B-doped and undoped polycrystalline diamond films
PublicationThe undoped and B-doped polycrystalline diamond thin film was synthesized by hot filament chemical vapor deposition and microwave plasma, respectively. The structural characterization was performed by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. The electrical properties of synthesized diamond layer were characterized by dc-conductivity method and charge deep level transient spectroscopy. The B-doped...
-
Unraveling the role of boron dimers in the electrical anisotropy and superconductivity in boron-doped diamond
PublicationWe use quantum mechanics (QM) to determine the states formed by B dopants in diamond. We find that isolated B sites prefer to form BB dimers and that the dimers pair up to form tetramers (BBCBB) that prefer to aggregate parallel to the (111) surface in the <110> direction, one double layer below the H-terminated surface double layer. These tetramers lead to metallic character (Mott metal Insulator Transition) with holes in the...
-
Fabrication of high-density nitrogen-vacancy (NV) center-enriched diamond particles through methyl trityl amine (C20H19N) seeding
PublicationDiamond particles (DPs) show promise for advanced applications in bioimaging and quantum sensing due to the presence of defect centers. This work reports a unique growth process for diamond particles composed of nitrogen-vacancy centers (NV-DPs) using a methyl trityl amine (C20H19N) diamondoid seed, which acts as a nitrogen source for NV creation. Growth was performed via microwave plasma-assisted chemical vapor deposition in a...
-
Nitrogen-Doped Diamond Film for Optical Investigation of Hemoglobin Concentration
PublicationIn this work we present the fabrication and characterization of a diamond film which can be utilized in the construction of optical sensors for the investigation of biological samples. We produced a nitrogen-doped diamond (NDD) film using a microwave plasma enhanced chemical vapor deposition (MWPECVD) system. The NDD film was investigated with the use of scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman...