Filters
total: 60
Search results for: CRYSTALLINITY
-
Dependence of photocatalytic activity of anatase powders on their crystallinity
Publication -
Photocatalytic activity and OH radical formation on TiO2 in the relation to crystallinity
Publication -
Amber extract as a bio‐additive to poly(lactic acid) films: Multimethod analysis of crystallinity and stability
Publication -
The In-Depth Studies of Pulsed UV Laser-Modified TiO2 Nanotubes: The Influence of Geometry, Crystallinity, and Processing Parameters
PublicationThe laser processing of the titania nanotubes has been investigated in terms of morphology, structure, and optical properties of the obtained material. The length of the nanotubes and crystallinity, as well as the atmosphere of the laser treatment, were taken into account. The degree of changes of the initial geometry of nanotubes were checked by means of scanning electron microscopy, which visualizes both the surface and the cross-section....
-
Reduced graphene oxide nanocomposites with different diameters and crystallinity of TiO2 nanoparticles – synthesis, characterization and photocatalytic activity
Publication -
Effect of crystallinity on structural, thermal, and in vitro dissolution properties of Na2O-CaO-Nb2O5/MgO-P2O5 glass-ceramics
PublicationThe impact of the crystallinity on structural, thermal, and in vitro dissolution properties were examined for Na2O- CaO-Nb2O5/MgO-P2O5 glasses/glass-ceramics. Glass-ceramics were synthesized via a spontaneous crystallization process. The Nb content in the materials increased with melting temperature, furthermore, the crystallinity is proportional to the Nb content. The presence of crystalline niobates and phosphates is confirmed...
-
XRD (X-ray diffraction) spectra of bulk boron and obtained borophene
Open Research DataThis dataset includes XRD (X-ray diffraction) spectra of bulk boron and borophene obtained during sonication process, giving the information on the phase composition and crystallinity of materials.
-
XRD patterns of V2O5 nanostructures
Open Research DataThe DataSet contains the XRD patterns of vanadium pentaoxide nanostructures obtained by the sol-gel with different annealing temperatures under synthetic air. The results show that crystallinity dependent on the annealing temperature.
-
XRD patterns of V2O3 nanostructures
Open Research DataThe DataSet contains the XRD patterns of V2O3 nanostructures obtained by the sol-gel with different reaction conditions. The xerogel powder was annealing under a reducing atmosphere (94% Ar, 6% H2) in the temperature range 350-700C. The results show that crystallinity dependent on the annealing temperature.
-
Giant Reed (Arundo donax L.) Fiber Extraction and Characterization for Its Use in Polymer Composites
PublicationThis work describes an extraction method for giant reed fibers from stems and leaves based on chemical soaking and crushing through a rolling mill. Obtained fibers, together with the shredded plant (stems + leaves), are characterized in terms of chemical composition, thermal stability, morphology, and crystallinity. Mechanical properties of fibers have also been assessed (single fiber tensile tests). The results show that the proposed...
-
Crystalline Polysaccharides: A Review
PublicationThe biodegradability and mechanical properties of polysaccharides are dependent on their architecture (linear or branched) as well as their crystallinity (size of crystals and crystallinity percent). The amount of crystalline zones in the polysaccharide significantly governs their ultimate properties and applications (from packaging to biomedicine). Although synthesis, characterization, and properties of polysaccharides have been...
-
Enhancement of the Magnetoresistance in the Mobility‐Engineered Compensated Metal Pt 5 P 2
PublicationThe magnetoresistance (MR) in nonmagnetic materials continues to be a fertile research area in materials science. The search for giant, positive MR has been limited to a rather small window of materials such as high-mobility semimetals in single-crystalline form. Here, the observation of a very large positive MR in metallic Pt5P2 in polycrystalline form is reported. The observations reveal that improvement of the crystallinity...
-
New-fangled sources of cellulose extraction: comparative study of the effectiveness of Cissus latifolia and Ficus benghalensis cellulose as a filler
PublicationRecycled polymers and biopolymers are receiving a great deal of attention these days. If these two can be combined, it will lead to an environment-friendly green material with a great deal of applications. Here the present work is about incorporating bio-based fillers in a recycled polyurethane matrix. Two unusual and extremely novel sources of cellulose have been proposed. The celluloses obtained from Cissus latifolia and Ficus...
-
Enzymatic and Chemical Cross-Linking of Bacterial Cellulose/Fish Collagen Composites—A Comparative Study
PublicationThis article compares the properties of bacterial cellulose/fish collagen composites (BC/Col) after enzymatic and chemical cross-linking. In our methodology, two transglutaminases are used for enzymatic cross-linking—one recommended for the meat and the other proposed for the fish industry—and pre-oxidated BC (oxBC) is used for chemical cross-linking. The structure of the obtained composites is characterized by scanning electron...
-
Synthesis of Titanium Dioxide via Surfactant-Assisted Microwave Method for Photocatalytic and Dye-Sensitized Solar Cells Applications
PublicationIn this study, titania nanoparticles were obtained using the microwave-assisted technique. Moreover, different surfactants (PEG (Mn = 400), Pluronic P123 and Triton X−100) were used during the synthesis in order to determine their impact on the crystallinity and morphology of the final products. Subsequently, techniques such as XRD, SEM and TEM (performed in high contrast and high-resolution mode), diffuse reflectance spectroscopy...
-
Sintering Parameter Investigation for Bimetallic Stainless Steel 316L/Inconel 718 Composite Printed by Dual-Nozzle Fused Deposition Modeling
PublicationFused deposition modeling (FDM) nowadays offers promising future applications for fabricating not only thermoplastic-based polymers but also composite PLA/Metal alloy materials, this capability bridges the need for metallic components in complex manufacturing processes. The research is to explore the manufacturability of multi-metal parts by printing green bodies of PLA/multi-metal objects, carrying these objects to the debinding...
-
Thermoplastic starch nanocomposites using cellulose-rich Chrysopogon zizanioides nanofibers
PublicationGreen thermoplastic starch (TPS) nanocomposite films aided by cellulose nanofibers (CNFs) from Chrysopogon zizanioides roots were developed and characterized. When compared to other lignocellulosic fibers, Chrysopogon zizanioides roots revealed exceptionally high cellulose content (~48%). CNFs were separated using an environmentally friendly acid isolation technique that included three stages: (i) alkali treatment; (ii) bleaching;...
-
Rheology of liquid crystalline polymers
PublicationLiquid crystallinity was invented in the 19th century. It was sometimes called the fourth state of matter because of the ability of macromolecules to generate liquid crystal phases. The main classification divided liquid crystalline polymers (LCPs) into lyotropic and thermotropic types. Interpretation of the rheological behavior of LCP is more complicated than for other polymers. Ordinary polymers are characterized by a normal...
-
Quantification of Compatibility Between Polymeric Excipients and Atenolol Using Principal Component Analysis and Hierarchical Cluster Analysis
PublicationAn important challenge to overcome in the solid dosage forms technology is the selection of the most biopharmaceutically efficient polymeric excipients. The excipients can be selected, among others, by compatibility studies since incompatibilities between ingredients of the drug formulations adversely affect their bioavailability, stability, efficacy, and safety. Therefore, new, fast, and reliable methods for detecting incompatibility...
-
Synthesis and characterisation of starch cuprate
PublicationThe cupration of granular potato starch with ammonium tetrachlorocuprate(II) was performed by a 20 min lasting microwave-assisted process and by 40 min convectional heating. In both cases the degree of esterification (DE) did not exceed 0.0064. A higher dose of cuprate had a positive effect on DE, regardless of whether the microwave irradiation or the convectional heating was applied, and on the thermal stability of the starch...
-
SYNTHESIS AND STRUCTURAL CHARACTERIZATION OF NIOBIUM-DOPED HYDROXYAPATITE CERAMICS
PublicationHydroxyapatite (HAp) ceramic materials are considered as one of the most promising implant materials in bone surgery and in dentistry. They exhibit unique biocompatibility, bioactivity, and osteoconductivity, which are the most desirable biomaterial features. However, HAp itself is brittle, has low strength, high degree of crystallinity and low solubility at physiological pH. Doping synthetic HAp with metal ions plays an important...
-
Microwave-assisted preparation of potato starch silicated with silicic acid
PublicationApplication of microwave irradiation for the silication of granular potato starch with silicic acid, and the properties of silicated starch were investigated. Potato starch was esterified on 20 min microwave irradiation of starch with silicic acid, applying the power of 450 or 800Wand, for comparison, on 120 min convectional heating of the reagent blend at 100 ◦C. The degree of esterification and the reaction efficiency did not...
-
An Easy and Ecological Method of Obtaining Hydrated and Non-Crystalline WO3−x for Application in Supercapacitors
PublicationIn this work, we report the synthesis of hydrated and non-crystalline WO3 flakes (WO3−x) via an environmentally friendly and facile water-based strategy. This method is described, in the literature, as exfoliation, however, based on the results obtained, we cannot say unequivocally that we have obtained an exfoliated material. Nevertheless, the proposed modification procedure clearly affects the morphology of WO3 and leads to loss...
-
What is in a name: Defining “high entropy” oxides
PublicationABSTRACT High entropy oxides are emerging as an exciting new avenue to design highly tailored functional behaviors that have no traditional counterparts. Study and application of these materials are bringing together scientists and engineers from physics, chemistry, and materials science. The diversity of each of these disciplines comes with perspectives and jargon that may be confusing to those outside of the individual fields,...
-
Spectroscopic studies of Nb-doped tricalcium phosphate glass-ceramics prepared by sol-gel method
PublicationCalcium-phosphate based glasses and glass-ceramics play a crucial role in the tissue engineering development. Apart from their high biocompatibility and excellent ability to undergo varying degrees of resorbability1, they exhibit relatively high bioactivity and due to that they are commonly used as bone and dental implants. A substantial research effort is devoted to improve calcium-phosphate materials physico-chemical properties...
-
Morphology and local chain structure of polyamide 6 modified in the solid state with a semi-aromatic nylon salt
PublicationStructural and conformational differences between the polyamide 6 (PA6) homopolymer and two copolymers of PA6 modified in the solid state with 20 and 30 wt% of the semi-aromatic nylon salt of 1,5-diamino-2-methylpentane (Dytek A) and isophthalic acid (IPA) in the feed were investigated. Room temperature wide-angle X-ray diffraction (WAXD) analysis together with 13C{1H} cross-polarization/magic-angle spinning solid-state (CP/MAS)...
-
Recent advances in electrochemically surface treated titanium and its alloys for biomedical applications: A review of anodic and plasma electrolytic oxidation methods
PublicationNowadays, titanium and its alloys are widely used materials in implantology. Nevertheless, the greatest challenge is still its appropriate surface treatment in order to induce optimal properties, which facilitates formation of a permanent bond between the implant and human tissue. The use of electrochemical treatment such as anodic oxidation or plasma electrolytic oxidation allows for the production of porous coating that mimics...
-
Insights into Compatibilization of Poly(ε-caprolactone)-based Biocomposites with Diisocyanates as Modifiers of Cellulose Fillers
PublicationThis study aimed to analyze the impact of cellulose fillers’ modification with diisocyanates on the performance of composites based on the poly(ε-caprolactone) (PCL) matrix. Four most commonly used diisocyantes (isophorone, hexamethylene, toluene, and methylene diphenyl) were applied as modifiers of cellulose fillers (5 and 15 wt% per mass of filler). Modified fillers were introduced in the amount of 30 wt% into the PCL matrix....
-
Chitin nanowhiskers from shrimp shell waste as green filler in acrylonitrile-butadiene rubber: Processing and performance properties
PublicationIn this work, chitin nanowhiskers with high crystallinity index were obtained from shrimp shells waste using acid hydrolysis method and then comprehensively characterized. Subsequently, the impact of chitin nanowhisker content on processing and performance of acrylonitrile-butadiene rubber based nanocomposites was evaluated. The results showed that the addition of chitin nanowhiskers increased tensile strength and tear strength...
-
Enhanced photocatalytic activity of transparent carbon nanowall/TiO2 heterostructures
PublicationThe synthesis of novel tunable carbon-based nanostructure represented a pivotal point to enhance the efficiency of existing photocatalysts and to extend their applicability to a wider number of sustainable processes. In this letter, we describe a transparent photocatalytic heterostructure by growing boron-doped carbon nanowalls (B-CNWs) on quartz, followed by a simple TiO2 sol-gel deposition. The effect on the thickness and boron-doping...
-
Structural and electrochemical heterogeneities of boron-doped diamond surfaces
PublicationThis brief review is focussed on the recent progress in studies of the heterogeneous electrochemical behaviour of various boron-doped materials extending from zero-dimensional particles through polycrystalline or nanostructured three-dimensional surfaces. A boron-doped diamond reveals large heterogeneities induced by numerous factors, inter alia multi-faceted crystallinity, inhomogeneous boron concentration, sp2/sp3-carbon ratio,...
-
Scaling Up the Process of Titanium Dioxide Nanotube Synthesis and Its Effect on Photoelectrochemical Properties
PublicationIn this work, for the first time, the influence of scaling up the process of titanium dioxide nanotube (TiO2NT) synthesis on the photoelectrochemical properties of TiO2 nanotubes is presented. Titanium dioxide nanotubes were obtained on substrates of various sizes: 2 × 2, 4 × 4, 5 × 5, 6 × 6, and 8 × 8 cm2. The electrode material was characterized using scanning electron microscopy as well as Raman and UV–vis spectroscopy in order...
-
Structural changes of bacterial cellulose due to incubation in conditions simulating human plasma in the presence of selected pathogens
PublicationBacterial nanocellulose (BNC) is a natural biomaterial with a wide range of medical applications. However, it cannot be used as a biological implant of the circulatory system without checking whether it is biodegradable under human plasma conditions. This work aimed to investigate the BNC biodegradation by selected pathogens under conditions simulating human plasma. The BNC was incubated in simulated biological fluids with or...
-
Influence of reactive oxygen species during deposition of iron oxide films by high power impulse magnetron sputtering.
PublicationIron oxide films were deposited using high power impulse magnetron sputtering (HiPIMS) of an iron cathode in an argon/oxygen gas mixture at different gas pressures (0.5~Pa, 1.5~Pa, and 5.0~Pa). The HiPIMS system was operated at a repetition frequency $f = 100$~Hz with a duty cycle of 1~\%. A main goal is a comparison of film growth during conventional and electron cyclotron wave resonance-assisted HiPIMS. The deposition plasma...
-
Microwave-assisted synthesis of zinc derivatives of potato starch
PublicationZincatated potato starch was prepared in a solid-state, microwave-assisted reaction using generated in situ sodium tetrahydroxozincate [Na2Zn(OH)4]. For comparison, zincatation of starch was also carriedout on convectional heating. Depending on the irradiation conditions, the products of either mono- or crosslinking esterification were formed. Higher power applied at shorter exposition offered products ofmonoesterification, and...
-
The Effect of Calcination Temperature on Structure and Photocatalytic Properties of WO3/TiO2 Nanocomposites
PublicationSeries ofWO3/TiO2 nanocompositeswere obtained by hydrothermal method followed by calcination in the temperature range from 400∘C to 900∘C. The characteristics of photocatalysts by X-ray diffractometry (XRD), scanning electron microscope (SEM), and diffuse reflectance spectroscopy (DRS) showed that increasing the calcination temperature from 400 to 900∘C resulted in change of photocatalytic activity under UV-Vis light.Moreover,...
-
Statistical evaluation of the changes in cellulose properties caused by the stepwise solvent exchange and esterification
PublicationThe objective of the research was to empirically confirm the changes in cellulose reactivity caused by the pre-treatment with solvents of different polarity. Therefore, 5 solvents varying in their polar component of surface tension from 0 to 4.6 mN/m were chosen. Their impact on the biopolymer properties was carefully analysed concerning chemical structure, crystallinity and surface characteristics. It was revealed that the length...
-
Cellulose Nanofibers Isolated from the Cuscuta Reflexa Plant as a Green Reinforcement of Natural Rubber
PublicationIn the present work, we used the steam explosion method for the isolation of cellulose nanofiber (CNF) from Cuscuta reflexa, a parasitic plant commonly seen in Kerala and we evaluated its reinforcing efficiency in natural rubber (NR). Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Thermogravimetric analysis (TGA) techniques...
-
Pressure-induced flow processing behind the superior mechanical properties and heat-resistance performance of poly(butylene succinate)
PublicationWe propose a pressure-induced flow (PIF) processing method for the simultaneous enhancement of strength, toughness, and heat resistance of biodegradable poly(butylene succinate) (PBS). The pressure and temperature were systematically adjusted to optimize the tensile strength of PBS. Under the optimized processing conditions, the structured PBS was characterized by relatively high strength of 89.5 MPa, toughness of 21.4 kJ·m−2 ,...
-
Manufacture and research of TPS/PE biocomposites properties
PublicationIn this paper the process of native starch preparing for modification by extrusion and manufacture of biocomposites is presented. The first aim of this study was to determine the mixing and granulating condition of native starch to obtain granulated native starch. For mixing and granulation of native starch Intensive Mixer manufactured by Maschinenfabrik Gustav Eirich was used. Mixing and granulation in a single process is a new...
-
Effect of rPET Content and Preform Heating/Cooling Conditions in the Stretch Blow Molding Process on Microcavitation and Solid-State Post-Condensation of vPET-rPET Blend: Part I—Research Methodology and Results
PublicationPolyethylene terephthalate (PET) is widely used in bottle production due to its costeffectiveness and low environmental impact. The first part of this article describes the research and statistical analysis methodology of the influence of the virgin PET (vPET) and recycled PET (rPET) content in the vPET-rPET blend, as well as the preform heating/cooling conditions in the stretch blow molding (SBM) process on the microscopic bottle...
-
Influence of hydrochloric acid concentration and type of nitrogen source on the electrochemical performance of TiO2/N-MoS2 for energy storage applications
PublicationIn this work, nitrogen-doped molybdenum sulfide was directly deposited on titanium dioxide nanotubes substrate (TiO2/N-MoS2) during hydrothermal synthesis. The study focuses on the influence of hydrochloric acid concentration used for the synthesis, with the results indicating its essential role in thioacetamide hydrolysis and thus in the effectiveness of the N-MoS2 deposition. The electrode material itself is characterized by...
-
Structure and Molecular Dynamics in Renewable Polyamides from Dideoxy-Diamino Isohexide
PublicationThe chemical structure, the conformation, andthe flexibility of the polymer chain fragments present in thepolyamides synthesized from 2,5-diamino-2,5-dideoxy-1,4;3,6-dianhydrosorbitol, 1,4-diaminobutane, and either sebacic orbrassylic acid have been studied by liquid-state 2D NMRspectroscopy viz. correlation spectra (COSY) and heteronuclearmultiple-bond correlation spectra (gHMBC), by 13Ccross-polarization/magic-angle spinning...
-
Correlations of structural, thermal and electrical properties of sodium doped complex borophosphosilicate glass
PublicationBorophosphosilicate glasses with varying sodium ion concentrations were investigated for their, structural, thermal, and electrical properties. All the obtained glasses were transparent except the glass with the highest sodium content, which exhibited translucency due to inhomogeneities. Increasing sodium content led to reduced boron and silicon content while maintaining a constant B/Si ratio, indicating progressive depolymerization...
-
FTIR, Raman spectroscopy and HT-XRD in compatibility study between naproxen and excipients
PublicationDetection of incompatibility between an active pharmaceutical ingredient (API) and excipients, including the selection of the most biopharmaceutical advantageous excipients is extremely important in the pre-formulation process of developing a solid dosage form technology. Therefore, having fast and reliable methods for identifying incompatibility is fundamental in pharmaceutical technology. For this purpose, combined Fourier transform...
-
The role of hydrogen bonding on tuning hard-soft segments in bio-based thermoplastic poly(ether-urethane)s
PublicationThis work describes the preparation of bio-based thermoplastic poly(ether-urethane)s (TPU) via a prepolymer method and investigates the effect of varying the interphase hydrogen-bonding (H-bonding) on physicochemical, thermal and mechanical properties. This was achieved by varying the glycol type and molar ratio of [NCO]/[OH] groups used during the prepolymer chain extending step. The TPUs’ chemical structure was analyzed by Fourier...
-
Semi-transparent ordered TiO2 nanostructures prepared by anodization of titanium thin films deposited onto the FTO substrate
PublicationIn a significant amount of cases, the highly ordered TiO2nanotube arrays grow through anodic oxidationof a titanium metal plate immersed in electrolyte containing fluoride ions. However, for some practicalapplications, e.g. solar cells or electrochromic windows, the semi-transparent TiO2formed directly onthe transparent, conductive substrate is very much desired. This work shows that high-quality Ti coatingcould be formed at room...
-
Chlorine-free extraction and structural characterization of cellulose nanofibers from waste husk of millet (Pennisetum glaucum)
PublicationThis study aims to extract cellulose nanofibers (CNFs) from a sustainable source, i.e. millet husk, which is an agro-waste worthy of consideration. Pre-treatments such as mercerisation, steam explosion, and peroxide bleaching (chlorine-free) were applied for the removal of non-cellulosic components. The bleached millet husk pulp was subjected to acid hydrolysis (5% oxalic acid) followed by homogenization to extract CNFs. The extracted...
-
Thermal degradation of polylactic acid (PLA)/polyhydroxybutyrate (PHB) blends: A systematic review
PublicationPolylactic acid (PLA) and polyhydroxybutyrate (PHB) are two biopolyesters obtained from renewable resources like corn or sugar under bacterial fermentation. PLA is the most widely used biopolymer in diverse applications. Addition of PHB to PLA can improves the crystallinity of PLA, and thereby its mechanical strength. However, both PLA and PHB suffer from poor thermal stability, which limits their potential industrial application....
-
A facile approach to fabricate load-bearing porous polymer scaffolds for bone tissue engineering
PublicationBiodegradable porous scaffolds with oriented interconnected pores and high mechanical are load-bearing biomaterials for bone tissue engineering. Herein, we report a simple, non-toxic, and cost-effective method to fabricate high-strength porous biodegradable scaffolds, composed of a polymer matrix of polycaprolactone (PCL) and water-soluble poly (ethylene oxide) (PEO) as a sacrificial material by integrating annealing treatment,...