Search results for: SMALL STRAIN STIFFNESS ANISOTROPY
-
Influence of anisotropic stiffness in numerical analyses of tunneling and excavation problems in stiff soils
PublicationIn the stiff overconsolidated soil deposits anisotropy influences small and intermediate strain stiffness and hence it has important impact on the results of discplacement preditcions in soil-structure modelling. The authors developed a cross-anisotropic soil model which combines both stress dependent and micro-structural anisotropy. The model is based on the anisotropic hyperelastic kernel for small strain stiffness. Reference...
-
Influence of soil anisotropic stiffness on the deformation induced by an open pit excavation.
PublicationIn this paper, the problem of deformation induced by an open pit excavation in anisotropic stiff soils is analysed by FE modelling. The presented research is focused on the influence of material model with anisotropic stiffness on the accuracy of deformation predictions as compared with the field measurements. A new hyperelastic-plastic model is applied to simulate anisotropic mechanical behaviour of stiff soils. It is capable...
-
A hyperelastic model for soils with stress-induced and inherent anisotropy
PublicationIn this paper, modelling of the superposition of stress-induced and inherent anisotropy of soil small strain stiffness is8presented in the framework of hyperelasticity. A simple hyperelastic model, capable of reproducing variable stress-induced9anisotropy of stiffness, is extended by replacement of the stress invariant with mixed stress–microstructure invariant to10introduce constant inherent cross-anisotropic component. A convenient...
-
Modelling tunnelling-induced deformation in stiff soils with a hyperelastic–plastic anisotropic model
PublicationIn this paper, the tunnelling-induced deformation in anisotropic stiff soils is analysed using FE modelling. The influence of material description is investigated rather than an advanced simulation of the tunnelling method. A new hyperelastic– plastic model is proposed to describe the anisotropic mechanical behaviour of stiff highly overconsolidated soil. This model can reproduce the superposition of variable stress-induced anisotropy...
-
Some aspects of the constitutive modelling of natural fine grained soils
PublicationThe monograph deals with selected problems of the constitutive modelling of natural fine grained soils commonly known as clays. The main idea is not to propose a unified model which is capable of describing all known features of mechanical behaviour of fine grained soils. Instead, separate models are proposed describing the mechanical behaviour of heavily overconsolidated, lightly overconsolidated and normally consolidated clays....
-
Refinement of the Hardening Soil model within the small strain range
PublicationThe popularity of the elasto-plastic Hardening Soil (HS) model is based on simple parameter identification from standard testing and empirical formulas. The HS model is implemented in many commercial FE codes designed to analyse geotechnical problems. In its basic version, the stress–strain behaviour within the elastic range is subject to the hypoelastic power law, which assures the barotropy of the elastic stiffness. However,...
-
Effect of strain level on the stiffness of cold recycled bituminous mixtures
PublicationCold recycling is a sustainable technology for the rehabilitation of bitumi-nous pavements. This study investigates the stiffness response of cement-bitumen treated materials (CBTM)manufactured with 80% reclaimed asphalt and treated with 2.0% Portland cement and 4.0% bitumen emulsion. Indirect tensile stiffness modulus tests were carried out to assess the strain dependence of stiffness at target horizontal deformation levels between...
-
Pure cross-anisotropy for geotechnical elastic potentials
PublicationThe pure cross-anisotropy is understood as a special scaling of strain (or stress). The scaled tensor is used as an argument in the elastic stiffness (or compliance). Such anisotropy can be overlaid on the top of any elastic stiffness, in particular on one obtained from an elastic potential with its own stress-induced anisotropy. This superposition does not violate the Second Law. The method can be also applied to other functions...
-
Discussion on “Dynamic soil-structure interaction: A three-dimensional numerical approach and its application to the Lotung case study”. Poor performance of the HSS model
PublicationThe Hardening Soil Small (HSS) is a constitutive model being extension to the well established Hardening Soil Model (HS) accounting for the nonlinearity of small strain stiffness. It is implemented in commercial finite element computer codes for geotechnical analyses and used widely in research and design. The article deals with a problem known as overshooting after very small load reversals. It induces much higher stiffness than...
-
Strain gauge results
Open Research DataThe aim of the research project is to determine the rotational stiffness of the connection between the purlin and the part of the truss top chord. The attached files are referred to strain gauge results placed on 16 specimens. For the specimens number from 1 to 8 the magnitudes should be multiplied by factor -2 and for the others by factor -1.
-
Density functional LCAO calculations of vibrational modes and phonon density of states in the strained single-layer phosphorene
PublicationThe paper presents an investigation of phosphorene under axial strain on the phonon density of states and vibrational modes. The studies were performed by means of density functional theory (DFT) within the linear combination of atomic orbitals (LCAO). The strained models were constructed using optimised supercell techniques. The vibrational mode spectra were estimated for strains applied for both the zigzag and armchair directions...
-
Post-critical buckling of truncated conical carbon nanotubes considering surface effects embedding in a nonlinear Winkler substrate using the Rayleigh-Ritz method
PublicationThis research predicts theoretically post-critical axial buckling behavior of truncated conical carbon nanotubes (CCNTs) with several boundary conditions by assuming a nonlinear Winkler matrix. The post-buckling of CCNTs has been studied based on the Euler-Bernoulli beam model, Hamilton’s principle, Lagrangian strains, and nonlocal strain gradient theory. Both stiffness-hardening and stiffness-softening properties of the nanostructure...
-
Polyacrylamide substrate viscosity impact on temozolomide activity in glioblastoma cells by flow cytometry and rheological measurements
Open Research DataDataset includes raw data on cell lines LN-229 and LN-18 treated with temozolomide measured by flow cytometry, rheometry and cell projections. It also includes calculations necessary for creation of figures and conclusions based on those figures in the publication titiled: "Substrate viscosity impairs temozolomide-mediated inhibition of glioblastoma...
-
Mechanical behaviour of knit synthetic mesh used in hernia surgery
PublicationPurpose: There is a discussion in literature concerning mechanical properties and modelling of surgical meshes. An important feature of elastic modulus dependency on load history is taken into account in this paper, as implants are subjected to variable loading during human activity. The example of DynaMesh®-IPOM surgical implant is studied. Methods: The analysis is based on failure tension tests and cyclic loading and unloading...
-
The effective elastic properties of human trabecular bone may be approximated using micro-finite element analyses of embedded volume elements.
PublicationBoundary conditions (BCs) and sample size affect the measured elastic properties of cancellous bone. Samples too small to be representative appear stiffer under kinematic uniform BCs (KUBCs) than under periodicity-compatible mixed uniform BCs (PMUBCs). To avoid those effects, we propose to determine the effective properties of trabecular bone using an embedded configuration. Cubic samples of various sizes (2.63, 5.29, 7.96, 10.58...
-
Advanced Mechanics of Marine Structures I, MSc, Summer 2022-2023, [L,T], PG_00051723
e-Learning Courses1. Literature overview, definition of marine and offshore structures, ocean engineering technologies and mechanical aspects, structural systems applied, jack-up drilling platforms and structural elements. 2. Tensor algebra fundamentals, stress and small strain states of a solid, constitutive relations. 3. SDOF and MDOF dynamic systems, damping and added masses in offshore vibrations, generalised eigenvalue problem, forced vibrations...
-
Modeling of Composite Shells in 6-Parameter Nonlinear Theory with Drilling Degree of Freedom
PublicationWithin the framework of a 6-parameter nonlinear shell theory, with strain measures of Cosserat type, constitutive relations are proposed for thin elastic composite shells. The material law is expressed in terms of five engineering constants of classical anisotropic continuum plus an additional parameter accounting for drilling stiffness. The theory allows for unlimited displacements and rotations. A number of examples are presented...
-
Anisotropic mechanical behavior and auxeticity of penta-graphene: Molecular statics/molecular dynamics studies
PublicationWe investigate the mechanical properties of penta-graphene (PG), a recently proposed two-dimensional carbon allotrope using atomistic simulation techniques combined with the empirical description of interatomic interactions. We report on the dependence of its three in-plane mechanical moduli (i.e. Young's modulus, Poisson's ratio and shear modulus) on the deformation direction, strain and temperature. We show that PG displays a...
-
Retrievable strain measuring system in screw displacement piles - readings and results interpretation problems
PublicationStatic load tests on foundation piles are generally carried out in order to determine load – displacement characteristic of the pile. For more detailed information, e.g. force distribution along the shaft, load transfer mechanism and characteristics of soil-structure interaction (unit resistance curves t-z, q-z) additional pile instrumentation is required. Most popular techniques focus on direct concrete strain measurements and...
-
Multiparameter sensitivity analysis of a GFRP composite footbridge of a sandwich structure and U-shaped cross-section
PublicationThe paper deals with multiparameter sensitivity analysis of a composite footbridge. A shell‐like structure is 14.5 m long shows U‐shaped cross‐section and inner service dimensions 1.3 × 2.5 m. Glass fiber reinforced polymer GFRP laminate constitutes faces of a sandwich structure while PET foam received from recycled bottle builts a core. The structure was divided into 285 independent areas where the thickness of laminates and stiffness...
-
Linear viscoelastic transversely isotropic model based on the spectral decomposition of elasticity tensors
PublicationThe linear viscoelasticity is still a useful model in the engineering for studying the behavior of materials loaded with different loading rates (frequencies). Certain types of materials reveal also an anisotropic behavior: fiber reinforced composites, asphalt concrete mixtures, or wood, to name a few. In general, researchers try to identify experimentally the dependence of engineering constants like: directional Young’s moduli...
-
Detailed investigation of the phase transition inKxP4W8O32and experimental arguments for a charge density wave due to hidden nesting
PublicationDetailed structural and magnetotransport properties of monophosphate tungsten bronze Kx(PO2)4(WO3)8 single crystals are reported. Both galvanomagnetic and thermal properties are shown to be consistent with a charge density wave electronic transition due to hidden nesting of the quasi-1D portion of the Fermi surface. We also observe the enhancement of electronic anisotropy due to reconstruction of the Fermi surface at the Peierls...
-
NON-LINEAR MASTIC CHARACTERISTICS BASED ON THE MODIFIED MSCR (MULTIPLE STRESS CREEP RECOVERY) TEST
PublicationMastic containing asphalt in its composition is an example of a viscoelastic material. It is an effective binder in asphalt. It consists of a filler (<0.063 mm) and asphalt mixed in the right proportions. Just like in asphalt, its response depends on the temperature level, the load and stress time. Changing the stress stiffness of the mastic affects the non-linear course of the stress-strain relationship. Modelling of the non-linear...
-
The dependence of linear viscoelasticity limits of cold-recycled mixtures on time of curing and compaction method
PublicationCold-recycled mixtures are currently among the most widely used and investigated methods that enable recycling of old pavement structures in an environmentally friendly manner. Upon milling, the old pavement structure – whose gradation can be improved with addition of virgin aggregate – is mixed and compacted at ambient temperature. The main binding agents are bituminous emulsion and cement. Due to their dual binding behaviour,...
-
On Anti-Plane Surface Waves Considering Highly Anisotropic Surface Elasticity Constitutive Relations
PublicationWithin the framework of highly anisotropic surface elasticity model we discuss the propagation of new type of surface waves that are anti-plane surface waves. By the highly anisotropic surface elasticity model we mean the model with a surface strain energy density which depends on incomplete set of second derivatives of displacements. From the physical point of view this model corresponds to a coating made of a family of parallel...
-
Preliminary study of linear viscoelasticity limits of cold recycled mixtures determined in Simple Performance Tester (SPT)
PublicationThe publication presents methodology developed for determination of linear viscoelasticity limits for cold recycled mixtures with cement and bituminous emulsion using Simple Performance Tester (SPT). Methodology was verified on reference materials (PCV and steel dummy specimens, cement concrete and asphalt concrete) to comply with elasticity and viscoelasticity theory. The developed methodology enabled determination of linear viscoelasticity...
-
Experimental observations on the creep behaviour of frozen soil
PublicationConstitutive models in the literature for creep of frozen soil are based on the direct use of time counted from the onset of creep. An explicit time dependence in a constitutive equation violates the principles of rational mechanics. No change in stress or temperature is allowed for during creep, using the time-based formulations. Moreover, the existing descriptions need much verification and improvement on the experimental side...
-
Laboratory fatigue assessment of large geocomposite-reinforced double-layered asphalt concrete beams
PublicationGeosynthetic reinforcement of asphalt layers has been used for several decades. Evaluation of the influence of these materials on pavement fatigue life is still ongoing, especially for new types of geocomposites. This paper presents the evaluation of fatigue performance of large asphalt concrete beams reinforced with a new type of composite in which square or hexagonal polypropylene stiff monolithic paving grid with integral junctions...
-
Laboratory fatigue assessment of large geocomposite-reinforced double-layered asphalt concrete beams
PublicationGeosynthetic reinforcement of asphalt layers has been used for several decades. Evaluation of the influence of these materials on pavement fatigue life is still ongoing, especially for new types of geocomposites. This paper presents the evaluation of fatigue performance of large asphalt concrete beams reinforced with a new type of composite in which square or hexagonal polypropylene stiff monolithic paving grid with integral junctions...
-
Limits of enhanced of macro- and meso-scale continuum models for studying size effect in concrete under tension
PublicationThe paper investigates a mechanical quasi-static size effect in concrete during splitting tension at the macro- and meso-level. In experiments, five different diameters of cylindrical concrete specimens were tested. Twodimensional plane strain finite element (FE) simulations were carried out to reproduce the experimental size effect. The size effect in experiments by Carmona et al. was also simulated. Two enhanced continuum concrete...
-
Comparative analysis of mechanical conditions in bone union following first metatarsophalangeal joint arthrodesis with varied locking plate positions: A finite element analysis
PublicationFirst metatarsophalangeal joint arthrodesis is a typical medical treatment performed in cases of arthritis or joint deformity. The gold standard for this procedure is arthrodesis stabilisation with the dorsally positioned plate. However, according to the authors’ previous studies, medially positioned plate provides greater bending stiffness. It is worth to compare the mechanical conditions for bone formation in the fracture callus...
-
Comparative Study of the Mechanical Behaviour of Bitumen- and Cement-Dominated Mixtures with Reclaimed Asphalt
PublicationThe bitumen emulsion-based recycling is a commonly used maintenance treatment in the rehabilitation of low-and medium-volume roads in Europe. Nevertheless, the wide range of climatic conditions across the continent resulted in the variety of mixture concepts and the requirements being adopted for various local conditions. In this regard, the most commonly used parameter to distinguish between the main mixture concepts is bitumen...
-
Strongly anisotropic surface elasticity and antiplane surface waves
PublicationWithin the new model of surface elasticity, the propagation of anti-plane surface waves is discussed. For the proposed model, the surface strain energy depends on surface stretching and on changing of curvature along a preferred direction. From the continuum mechanics point of view, the model describes finite deformations of an elastic solid with an elastic membrane attached on its boundary reinforced by a family of aligned elastic...
-
Atomic-Scale Finite-Element Modeling of Elastic Mechanical Anisotropy in Finite-Sized Strained Phosphorene Nanoribbons
PublicationNanoribbons are crucial nanostructures due to their superior mechanical and electrical properties. This paper is devoted to hybrid studies of the elastic mechanical anisotropy of phosphorene nanoribbons whose edges connect the terminals of devices such as bridges. Fundamental mechanical properties, including Young’s modulus, Poisson’s ratio, and density, were estimated from first-principles calculations for 1-layer, 3-layer, and...
-
Identification of Bodner-Partom model parameters for technical fabrics
PublicationThe thorough analysis of modeling technical fabrics behavior with the viscoplastic Bodner-Partom constitutive law is presented. The study has been focused on differences between the warp and weft direction of the material. To obtain the model’s parameters only the uniaxial tensile laboratory tests with three different, but constant strain rates are required. The parameters have been found for polyester fibers PVC coated fabrics:...
-
Monitoring of crosslinking of a DGEBA-PAMAM adhesive in composite/aluminium bonded joint using mechanical and ultra-sound techniques
PublicationAdhesive cure is an important and determining aspect of strength and stability of bonded structures. Crosslinking of the polymer leads to the adhesive strength, stiffness and durability. Depending on the resin and curing agent used, cure time can vary from minutes to weeks, even then 100% crosslinking not being guaranteed. Standard methods based on dynamic mechanical analysis (DMA) or calorimetric techniques (DSC, DTA) are valuable...
-
Parametric optimization of sandwich composite footbridge with U-shaped cross-section
PublicationParametric optimization of sandwich composite footbridge was presented in the paper. Composite footbridge has 14,5 m long and has U-shaped cross-section with inner dimensions 2,6 × 1,3 m. The sandwich structure in made from GFRP laminate as a faces and PET foam as a core. The aim of analysis was to minimize the mass of the new footbridge that can lead to minimize the cost of structure. After optimization was conducted, the new...
-
CHARACTERIZATION STUDY ON MECHANICAL PROPERTIES OF POLYESTER COATED FABRIC
PublicationThe scope of the paper is to determine the mechanical properties of the Precontraint 1302 polyester coated fabric under uniaxial and biaxial tensile tests. The results are compared for Precontraint 1302 fabric and other types of coated fabrics. The author applied an orthotropic model and a dense net model to reflect the polyester coated fabric performance under uniaxial and biaxial tensile tests. Material parameters are specified...
-
Contact with coupled adhesion and friction: Computational framework, applications, and new insights
PublicationContact involving soft materials often combines dry adhesion, sliding friction, and large deformations. At the local level, these three aspects are rarely captured simultaneously, but included in the theoretical models by Mergel et al., (2019). We here develop a corresponding finite element framework that captures 3D finite-strain contact of two deformable bodies. This framework is suitable to investigate sliding friction even...
-
Static load test on concrete pile – instrumentation and results interpretation
PublicationFor some time (since 8-10 years in Poland) a special static load tests on instrumented piles are carried out. Such studies are usually of a scientific nature and provide detailed quantitative data on the load transfer into the ground and characteristics of particular soil layers interaction with a pile shaft and pile base. Deep knowledge about the pile-subsoil interaction can be applied for a various design purposes, e.g. numerical...
-
Static Load Test on Instrumented Pile – Field Data and Numerical Simulations
PublicationFor some time (since 8-10 years in Poland) a special static load tests on instrumented piles are carried out. Such studies are usually of a scientific nature and provide detailed quantitative data on the load transfer into the ground and characteristics of particular soil layers interaction with a pile shaft and pile base. Deep knowledge about the pile-subsoil interaction can be applied for a various design purposes, e.g. numerical...
-
Study on deformed steel columns subjected to impact load due to soft-storey failure in buildings during earthquakes
PublicationThe so called soft-storey failure is one of the most typical types of damage induced in buildings as the result of earthquake excitation. It has been observed during ground motions that the failure of an upper soft storey of a structure results in large vertical impact load acting on the lower floors. If the resistance of the structural members of the lower storeys is not sufficient it may further lead to progressive collapse of...
-
Nano soil improvement technique using cement
PublicationNano soil-improvement is an innovative idea in geotechnical engineering. Nanomaterials are among the newest additives that improve soil properties. Herein, laboratory tests, such as unconfined compressive strength, direct shear test, and initial tests, were conducted to investigate the geotechnical properties of Kelachay clay with micro- and nanosized cement to evaluate its particles in untreated soil and observe changes in the...
-
Effect of fabric anisotropy on shear localization in sand during plane strain compression
PublicationW artykule przedstawiono wyniki numerycznej wpływu anizotropii strukturalnej w materiałach granulowanych na powstawanie lokalizacji odkształceń. Obliczenia wykonano dla ściskania w płaskim stanie odkształcenia stosując metodę elementów skończonych na bazie mikropolarnego modelu hipoplastycznego.
-
Effect of Chitosan Solution on Low-Cohesive Soil’s Shear Modulus G Determined through Resonant Column and Torsional Shearing Tests
PublicationIn this study the effect of using a biopolymer soil stabilizer on soil stiffness characteristics was investigated. Chitosan is a bio-waste material that is obtained by chemical treatment of chitin (a chemical component of fungi or crustaceans’ shells). Using chitosan solution as a soil stabilizer is based on the assumption that the biopolymer forms temporary bonds with soil particles. What is important is that these bonds are biodegradable,...
-
Assessment of Thermal Stresses in Asphalt Mixtures at Low Temperatures Using the Tensile Creep Test and the Bending Beam Creep Test
PublicationThermal stresses are leading factors that influence low-temperature cracking behavior of asphalt pavements. During winter, when the temperature drops to significantly low values, tensile thermal stresses develop as a result of pavement contraction. Creep test methods can be suitable for the assessment of low-temperature properties of asphalt mixtures. To evaluate the influence of creep test methods on the obtained low-temperature...
-
Processing and structure–property relationships of natural rubber/wheat bran biocomposites
PublicationIn this work, wheat bran was used as cellulosic filler in biocomposites based on natural rubber. The impact of wheat bran content [ranging from 10 to 50 parts per hundred rubber (phr)] on processing, structure, dynamic mechanical properties, thermal properties, physico-mechanical properties and morphology of resulting biocomposites was investigated. For better characterization of interfacial interactions between natural rubber...
-
Modelling of Asphalt Mixes under Long Time Creep at Low Temperatures
PublicationProper description of asphalt mixtures behavior under long time load is one of the most important factors in analyses of strain and stress relations at low temperatures both from traffic and environmental loads. For example different models of thermal stress accumulation require different approaches of description of asphalt concrete. But in all cases it is required to describe its behavior under long time loading, which in some...
-
Flexoelectricity and apparent piezoelectricity of a pantographic micro-bar
PublicationWe discuss a homogenized model of a pantographic bar considering flexoelectricity. A pantographic bar consists of relatively stiff small bars connected by small soft flexoelectric pivots. As a result, an elongation of the bar relates almost to the torsion of pivots. Taking into account their flexoelectric properties we find the corresponding electric polarization. As a results, the homogenized pantographic bar demonstrates piezoelectric...
-
Local material symmetry group for first- and second-order strain gradient fluids
PublicationUsing an unified approach based on the local material symmetry group introduced for general first- and second-order strain gradient elastic media, we analyze the constitutive equations of strain gradient fluids. For the strain gradient medium there exists a strain energy density dependent on first- and higher-order gradients of placement vector, whereas for fluids a strain energy depends on a current mass density and its gradients....