displaying 1000 best results Help
Search results for: LINEAR MIXED EFFECT MODEL
-
Process engineering in circular economy
e-Learning CoursesDefinition and principles of the circular economy (CE). The transition from a linear model to a circular model. Business models for the CE. Circular design and innovation. CE assessment carbon footprint, life cycle assessment. Case studies of the cities implementing the CE concept. CE policy and legislation (EU and Poland). Wastewater treatment plants as an element of the CE. Energy and nutrient recovery technologies in wastewater...
-
Nexus between stock markets, economic strength, R&D and environmental deterioration: new evidence from EU-27 using PNARDL approach
PublicationThis research investigates the impact of stock market indices, economic strength, and research and development expenditures on environmental deterioration in the EU-27 countries for the period 2000–2020. This study utilized linear and non-linear panel ARDL to estimate the short- and long-run effect. According to the results, the stock market indices have negative effect on environmental deterioration in the symmetric form. However,...
-
The effect of wax foundation addition to PCL filaments on mechanical properties.
Open Research DataThe dataset includes the effect of wax foundation addition on the basic mechanical properties of the filaments. PCL and wax foundation addition at 10 and 15% were used for extrusion. The mechanical properties of the resulting filaments were evaluated by a double compression test using an Instron model 5543 universal testing machine. Parameters such...
-
Simulation of perovskite-based CuI/CH3NH3PbI3/TiO2 solar cell performance
Open Research DataThe presented data set is part of the theoretical research on novel thin-layer lead-halide perovskite solar cells with different inorganic transparent conductive oxides used as charge transport layers. In this study CuI/CH3NH3PbI3/TiO2 model structure (Model 1) was investigated by the use of the SCAPS-1D simulation method (https://scaps.elis.ugent.be/).
-
Simulation of perovskite-based CuI/CH3NH3PbI3/SnO2 solar cell performance
Open Research DataThe presented data set is part of the theoretical research on novel thin-layer lead-halide perovskite solar cells with different inorganic transparent conductive oxides used as charge transport layers. In this study CuI/CH3NH3PbI3/SnO2 model structure (Model 2) was investigated by the use of the SCAPS-1D simulation method (https://scaps.elis.ugent.be/).
-
Simulation of perovskite-based CuI/CH3NH3PbI3/ZnO solar cell performance
Open Research DataThe presented data set is part of the theoretical research on novel thin-layer lead-halide perovskite solar cells with different inorganic transparent conductive oxides used as charge transport layers. In this study CuI/CH3NH3PbI3/ZnO model structure (Model 3) was investigated by the use of the SCAPS-1D simulation method (https://scaps.elis.ugent.be/).
-
On the Dynamics of a Visco–Piezo–Flexoelectric Nanobeam
PublicationThe fundamental motivation of this research is to investigate the effect of flexoelectricity on a piezoelectric nanobeam for the first time involving internal viscoelasticity. To date, the effect of flexoelectricity on the mechanical behavior of nanobeams has been investigated extensively under various physical and environmental conditions. However, this effect as an internal property of materials has not been studied when the...
-
Stability analysis of nanobeams in hygrothermal environment based on a nonlocal strain gradient Timoshenko beam model under nonlinear thermal field
PublicationThis article is dedicated to analyzing the buckling behavior of nanobeam subjected to hygrothermal environments based on the principle of the Timoshenko beam theory. The hygroscopic environment has been considered as a linear stress field model, while the thermal environment is assumed to be a nonlinear stress field based on the Murnaghan model. The size-dependent effect of the nanobeam is captured by the nonlocal strain gradient...
-
Influence of the presence of rhamnolipids and ionic cross-linking conditions on the mechanical properties of alginate hydrogels.
Open Research DataThe dataset contains the results of determination the effect of rhamnolipids concentration, calcium chloride concentration and ionic cross-linking time on the mechanical properties of alginate hydrogels prepared by immersing the alginate mixture limited by the dialysis membrane in an appropriate cross-linking solution containing calcium ions. The mechanical...
-
Technology and democracy: the who and how in decision-making. The cases of Estonia and Catalonia. METADATA
Open Research DataThe analysis of the Estonian data comes mainly from studies conducted to analyse the cost-efficiency of the Estonian online voting model (Krimmer; Duenas-Cid; Krivonosova, 2021), as well as from the contagion effect that ensued in other parts of the Estonian administration after the voting system was developed (Krimmer; Duenas-Cid,2019). In both cases,...
-
Technology and democracy: the who and how in decision-making. The cases of Estonia and Catalonia. METADATA 1
Open Research DataThe analysis of the Estonian data comes mainly from studies conducted to analyse the cost-efficiency of the Estonian online voting model (Krimmer; Duenas-Cid; Krivonosova, 2021), as well as from the contagion effect that ensued in other parts of the Estonian administration after the voting system was developed (Krimmer; Duenas-Cid,2019). In both cases,...
-
Kazimierz Darowicki prof. dr hab. inż.
PeopleStudia wyższe ukończyłem w czerwcu 1981 roku po zdaniu egzaminu dyplomowego i obronie pracy magisterskiej. Opiekunem pracy magisterskiej był dr hab. inż. Tadeusz Szauer. W roku 1991, 27 listopada uzyskałem stopień naukowy broniąc pracę doktorską zatytułowaną „Symulacyjna i korelacyjna analiza widm immitancyjnych inhibitowanej reakcji elektrodowej”. Promotorem pracy był prof. dr hab. inż. Józef Kubicki (Wydział Chemiczny...
-
Ultrawideband transmission in physical channels: a broadband interference view
PublicationThe superposition of multipath components (MPC) of an emitted wave, formed by reflections from limiting surfaces and obstacles in the propagation area, strongly affects communication signals. In the case of modern wideband systems, the effect should be seen as a broadband counterpart of classical interference which is the cause of fading in narrowband systems. This paper shows that in wideband communications, the time- and frequency-domain...
-
MICROECONOMETRICS (PG_00060790)
e-Learning CoursesExplains the importance and interrelations between factors describing economic and social phenomena, based on microdata, selecting appropriate econometric tools allowing for their proper interpretation. Subject contents: 1. Introduction to microeconometrics2 Linear models3. Blinder-Oaxaca decomposition4. Models of qualitative binomial variables (logit, probit)5. Models of polynomial variables (logit polynomial model, conditional...
-
On forced vibrations of piezo-flexomagnetic nano-actuator beams
PublicationThe effect of excitation frequency on the piezomagnetic Euler-Bernoulli nanobeam taking the flexomagnetic material phenomenon into consideration is investigated in this chapter. The magnetization with strain gradients creates flexomagneticity. We couple simultaneously the piezomagnetic and flexomagnetic properties in an inverse magnetization. Resemble the flexoelectricity, the flexomagneticity is also size-dependent. So, it has...
-
Launching of steel bridge girder. Application of nonlinear shell models
PublicationThe paper describes the final technology of launching the steel bridge superstructure. The original technology failed in the first construction stage. Local damage of steel webs caused by plastic buckling stopped the procedure. In the effect of damage a new consulting team was employed to solve the problem and redesign a technology of constructing. The key element of the new solution was developed with great help of non-linear...
-
Dual role of oxygen-related defects in the luminescence kinetics of AlNMn2+
Open Research DataThis dataset presents the impact of temperature and pressure on AlN:Mn2+ luminescence kinetics. Unusual behavior of Mn2+ optical properties during UV excitation is observed, where a strong afterglow luminescence of Mn2+ occurs even at low temperatures. When the temperature increases, the contribution of the afterglow luminescence is further enhanced,...
-
Introduction to Numerical Simulation
e-Learning CoursesCourse description: This interdisciplinary course provides an introduction to computational techniques for the simulation of a broad range of engineering and physical systems. Concepts and methods discussed are widely illustrated by applications drawn from electrical, mechanical, and chemical engineering. Topics include: mathematical formulations of simulation problems; sparse direct and iterative linear system solution techniques,...
-
Synthetic, Structural, and Spectroscopic Characterization of a Novel Family of High-Spin Iron(II) [(β-Diketiminate)(phosphanylphosphido)] Complexes
PublicationThis work describes a series of iron(II) phosphanylphosphido complexes. These compounds were obtained by reacting lithiated diphosphanes R2PP(SiMe3)Li (R = t-Bu, i-Pr) with an iron(II) β-diketiminate complex, [LFe(μ2-Cl)2Li(DME)2] (1), where DME = 1,2-dimethoxyethane and L = Dippnacnac (β-diketiminate). While the reaction of 1 with t-Bu2PP(SiMe3)Li yields [LFe(η1-Me3SiPPt- Bu2)] (2), that of 1 with equimolar amounts of i-Pr2PP(SiMe3)Li,...
-
Buckling analyses of cylindrical metal silos containing bulk solids
PublicationThe paper presents quasi-static 3D buckling analysis results of thin-walled cylindrical metal silos with and without bulk solids. The behaviour of the bulk solid was described with a hypoplastic constitutive model. Non-linear analyses with geometric and material non-linearity were performed with a perfect and an imperfect silo shell. Different initial geometric imperfections were considered. The influence of internally stored bulk...
-
A model of the response of the MGS-6 gravity sensor to tilting
PublicationThe reliable interpretation of the measurements made by the Micro-g marine gravimetric system (MGS-6) depends on how the temporary changes of the scale coefficients such as gravimeter scale factor, vertical cross-coupling (VCC) effect, tiltmeter cross and tiltmeter long are compensated for during the signal analysis. The listed coefficients cannot be determined from readings during the measurements or by analysing the final data....
-
Direct shear stress vs strain relation for fiber reinforced composites
PublicationThe majority of fiber reinforced composites exhibit strong non-linear behavior in in-plane shear state. The effect is attributed to the micro-cracks appearing in the matrix and can be modeled on the micro and macro level. In this work the author proposes constitutive laws describing the non-linear in-plane shear response, which can be alternative for the relations commonly considered in the literature. The proposed equations are...
-
Linear viscoelastic modelling of damage-involved structural pounding during earthquakes
PublicationDamage-involved structural pounding during earthquakes has been recently intensively studied using different impact force models. The results of the previous studies indicate that the linear viscoelastic model is relatively simple yet accurate in modelling pounding-involved behaviour of structures during earthquakes. The only shortcoming of the model is a negative value of the pounding force occurring just before separation, which...
-
A new hyperbolic-polynomial higher-order elasticity theory for mechanics of thick FGM beams with imperfection in the material composition
PublicationA drawback to the material composition of thick functionally graded materials (FGM) beams is checked out in this research in conjunction with a novel hyperbolic‐polynomial higher‐order elasticity beam theory (HPET). The proposed beam model consists of a novel shape function for the distribution of shear stress deformation in the transverse coordinate. The beam theory also incorporates the stretching effect to present an indirect...
-
Electrochemical detection of 4,4',5,5'-tetranitro-1H,1'H-2,2'-biimidazole on boron-doped diamond/graphene nanowall electrodes
PublicationWe present a promising approach to the electroanalytical detection of a specific nitroaromatic explosive in landfill leachates (LLs) that originated from a municipal solid waste plant. The paper is focused but not limited to the sensing of 4,4',5,5'-tetranitro-1H,1'H-2,2'-biimidazole (TNBI) using differential pulse voltammetry and cyclic voltammetry. Highly electroactive nanocarbon was applied to determine low concentrations of...
-
Torsional buckling and post-buckling of columns made of aluminium alloy
PublicationThe paper concerns torsional buckling and the initial post-buckling of axially compressed thin-walled aluminium alloy columns with bisymmetrical cross-section. It is assumed that the column material behaviour is described by the Ramberg–Osgood constitutive equation in non-linear elastic range. The stationary total energy principle is used to derive the governing non-linear differential equation. An approximate solution of the equation...
-
Impact of Low Switching-to-Fundamental Frequency Ratio on Predictive Current Control of PMSM: A simulation study
PublicationPredictive current control algorithms for permanent magnet synchronous (PMSM) drives rely on an assumption that within short intervals motor currents can be approximated with linear functions. This approximation may result either from discretizing the motor model or from simplifications applied to the continuous-time model. As the linear current approximation has been recognized as inaccurate in case when the drive operates with...
-
The effect of anionic surfactant concentration on activated sludge condition and phosphate release in biological treatment plant
PublicationThis paper discusses the influence of a wide range of anionic surfactant concentrations on activated sludge. Linear alkylbenzene sulphonate (LAS) was chosen as an example of a commonly used anionic surfactant. The fate of the surfactant during biological treatment of wastewater was tested. The effect of surfactant on glucose and starch removal was studied.
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 140 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 160 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 180 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 220 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 200 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-0optic sensor - 250 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 210 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 300 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 270 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 190 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 260 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 290 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 170 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 280 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 150 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 230 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 240 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 220 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - microsphere inspection s.2
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - microsphere inspection s.1
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Mitigating the seismic pounding of multi-story buildings in series using linear and nonlinear fluid viscous dampers
PublicationSeismic-induced pounding between adjacent buildings may have serious consequences, ranging from minor damage up to total collapse. Therefore, researchers try to mitigate the pounding problem using different methods, such as coupling the adjacent buildings with stiff beams, connecting them by using viscoelastic links, and installing damping devices in each building individually. In the current paper, the effect of using linear and...
-
Modelling of pipes conveying flowing liquid
PublicationThe paper introduces the method of modal reduction of system which consists of pipe with flowing liquid. The concept of hybrid model is proposed. The system model consists of two parts, the modal model and the finite elements model. The modal model represents linear, self-adjoined part of the system, while simple lumped technique is applied for modelling of Coriolis phenomena.