Search results for: IMPEDANCE SPECTROSCOPY
-
Reduction of Tire Rolling Resistance by Optimization of Road Surfaces and Tires
PublicationDuring interaction between tire and road surface three very important phenomena are always in effect. One of them (very desirable) is friction that is important for traction, braking and cornering. Two other phenomena are not desirable at all, that is rolling resistance and noise. This paper discusses relations between road surface and tire parameters versus tire rolling resistance. Road surface texture, porosity, impedance, strength...
-
Electrical Interface Parameters of PEDOT: PSS: Effect of Electrodeposition Charge Evaluated Under Body Conditions for Neural Electrode Applications
PublicationThis study explores the influence of the deposition charge of poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) on its electrical interface parameters. For this purpose, PEDOT:PSS was fabricated by electrodeposition on commercial platinum electrodes with the time limited by different charges (1, 3, 6, 9 mC). Further, the electrodes were characterized regarding their electrical interface such as interfacial...
-
Using Synchronously Registered Biosignals Dataset for Teaching Basics of Medical Data Analysis – Case Study
PublicationMedical data analysis and processing strongly relies on the data quality itself. The correct data registration allows many unnecessary steps in data processing to be avoided. Moreover, it takes a certain amount of experience to acquire data that can produce replicable results. Because consistency is crucial in the teaching process, students have access to pre-recorded real data without the necessity of using additional equipment...
-
A Wideband Corrugated Ridged Horn Antenna with Enhanced Gain and Stable Phase Center for X- and Ku-Band Applications
PublicationIn this letter, a structure and design procedure of a novel double-flared conical horn antenna with an improved gain and a stable phase center is presented. The antenna incorporates a hybrid ridged and corrugated structure. A double-ridged section is responsible for ensuring a wideband operation, whereas the corrugated section supports the hybrid mode. The antenna impedance bandwidth (VSWR < 2) is 6 GHz to 20 GHz. Excellent performance...
-
Multi-objective optimization of compact UWB impedance matching transformers using Pareto front exploration and adjoint sensitivities
PublicationIn this paper, a technique for fast multi-objective optimization of impedance matching transformers has been presented. In our approach, a set of alternative designs that represent the best possible trade-offs between conflicting objectives (here, the maximum reflection level within a frequency band of interest and the circuit size) is identified by directly exploring the Pareto front. More specifically, the subsequent Pareto-optimal...
-
Design and Experiments of a Piezoelectric Motor Using Three Rotating Mode Actuators
PublicationThis paper represents a numerical and experimental investigation of the multicell piezoelectric motor. The proposed design consists of three individual cells that are integrated into the stator, double rotor, and a preload system combined into a symmetrical structure of the motor. Each of the cells is characterized by a traveling wave and rotating mode motor. A finite element numerical analysis is carried out to obtain optimal...
-
Manganese–Cobalt Based Spinel Coatings Processed by Electrophoretic Deposition Method: The Influence of Sintering on Degradation Issues of Solid Oxide Cell Oxygen Electrodes at 750 °C
PublicationThis paper seeks to examine how the Mn–Co spinel interconnect coating microstructure can influence Cr contamination in an oxygen electrode of intermediate temperature solid oxide cells, at an operating temperature of 750 °C. A Mn–Co spinel coating is processed on Crofer 22 APU substrates by electrophoretic deposition, and subsequently sintered, following both the one-step and two-step sintering, in order to obtain significantly...
-
Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion
PublicationIn this work, a strategy for one-stage synthesis of polymer composites based on PNIPAAm hydrogel was presented. Both conductive particles in the form of conductive carbon black (cCB) and MnCo2O4 (MCO) spinel particles were suspended in the three-dimensional structure of the hydrogel. The MCO particles in the resulting hydrogel composite acted as an electrocatalyst in the oxygen evolution reaction. Morphological studies confirmed...
-
Low-cost multi-objective design of compact microwave structures using domain patching
PublicationA good compromise between size and electrical performance is an important design consideration for compact microwave structures. Comprehensive information about size/performance trade-offs can be obtained through multi-objective optimization. Due to considerable electromagnetic (EM) cross-couplings in highly compressed layouts, the design process has to be conducted at the level of high-fidelity EM analysis which is computationally...
-
Towards Healthcare Cloud Computing
PublicationIn this paper we present construction of a software platform for supporting medical research teams, in the area of impedance cardiography, called IPMed. Using the platform, research tasks will be performed by the teams through computer-supported cooperative work. The platform enables secure medical data storing, access to the data for research group members, cooperative analysis of medical data and provide analysis supporting tools...
-
Assembling and testing of quasi-static hybrid piezoelectric motor based on electroactive lubrication principle
PublicationThe presented paper concerns a novel concept of hybrid piezoelectric motor based on electroactive lubrication principle. Its structure is combined of quasi-static and resonance piezoelectric actuators, synchronizing their work to generate the rotary movement. The hybrid motor topology is compared to the existing piezoelectric motors, regarding its field of applications in embedded systems with very high security requirements. The...
-
Identification of the mechanical properties of the skin by electromechanical impedance analysis of resonant piezoelectric actuator
PublicationThis paper is devoted to the analysis and verification of developed piezoelectric sensor/actuator for measuring the mechanical properties of soft tissues, especially human skin. The key element of the measurement structure is an electromechanical system that uses both the reverse piezoelectric effect (vibration generation – stimulation of the tissues in the appropriate frequency range) and direct piezoelectric effect (system response...
-
Multisine impedimetric monitoring with an in-depth distribution of relaxation times analysis of WE43 and AZ31 magnesium alloys corrosion
PublicationThis research aims to develop and utilize an impedance-based tool for monitoring non-stationary electrochemical processes, coupling the multisinusoidal perturbation signal approach and distribution of relaxation times (DRT) analysis for the first time. The approach was used to distinguish independent processes occurring at the surface of AZ31 and WE43 Mg alloys undergoing corrosion in Hank’s Balanced Salt Solution at 37 °C. We...
-
Multifrequency Wideband Sonar Array
PublicationThis paper describes of new approach to Multifrequency Wideband Arrays (MWA),applied piezocomposite technologies of the array elements. MWA operating in transmitting(Tx) and receiving (Rx) mode on two or three bands, requires state-of-the-art technology andefficient array designing than conventional array in which separate arrays for every band oreven separate Tx and Rx transducers/arrays are used. The new piezocomposite elements...
-
Verification of safety in low-voltage power systems without nuisance tripping of residual current devices
PublicationLow-voltage power systems require initial and periodical verification to check the effectiveness of protection against electric shock. As a protection in case of fault, automatic disconnection of supply is most often used. To verify such a protection measure, the earth fault loop impedance or resistance is measured. This measurement is easy to perform in circuits without residual current devices. When residual current devices are...
-
Compact Dual-Polarized Corrugated Horn Antenna for Satellite Communications
PublicationIn this paper, a structure and design procedure of a novel compact dual-polarized corrugated horn antenna with high gain and a stable phase center for satellite communication is presented. The antenna incorporates an Ortho-Mode Transducer (OMT), a mode converter, and a corrugated structure. The compact OMT section is designed to be fed by standard WR-75 waveguides. The proposed compact design utilizes only ten corrugated slots...
-
A bisection‐based heuristic for rapid EM‐driven multiobjective design of compact impedance transformers
PublicationDesign of microwave structures is a multiobjective task where several conflicting requirements have to be considered at the same time. For contemporary circuits characterized by complex geometries, multiobjective optimization cannot be performed using standard population‐based algorithms due to high cost of electromagnetic (EM) evaluations. In this work, we propose a deterministic approach for fast EM‐driven multiobjective design...
-
Design and Characterization of a Planar Structure Wideband Millimeter-Wave Antenna with Wide Beamwidth for Wearable off-body Communication Applications
PublicationThis letter presents the design of a planar single-layer wideband antenna featuring wide beamwidth has well as high and stable in-band gain. The proposed antenna is a planar monopole fed by a bottom-grounded coplanar waveguide to realize wide beamwidth in both the xz- and yz-planes. Simultaneous optimization of all adjustable antenna parameters, carried out at the full-wave electromagnetic simulation level. The constructive interference...
-
Design considerations for compact microstrip resonant cells dedicated to efficient branch-line miniaturization
PublicationA conventional compact microstrip resonant cell (CMRC)has been thoroughly investigated to enhance its slow-wave properties and subsequently ensure an efficient miniaturization of a microstrip circuit. The geometry of a classic CMRC has been improved in terms of slowwave effect in two progressive steps: (i) a single-element topology has been replaced with a double-element one and (ii) a high-impedance section has been refined by...
-
Improved Bandwidth of Microstrip Wide-Slot Antenna Using Gielis Curves
PublicationThe development of a broadband printed wide-slot antenna based on Gielis curves is presented in this article. The printed wide-slot antenna can be conveniently reshaped to achieve ultra-wideband performance by using superformula. The distinct advantage of employing the superformula in design of wide-slot antenna lies in its ability to define nearly any geometric shape including non-standard, complex and non-intuitive for the wide-slot...
-
Explicit Size-Reduction-Oriented Design of a Compact Microstrip Rat-Race Coupler Using Surrogate-Based Optimization Methods
PublicationIn this paper, an explicit size reduction of a compact rat-race coupler implemented in a microstrip technology is considered. The coupler circuit features a simple topology with a densely arranged layout that exploits a combination of high- and low-impedance transmission line sections. All relevant dimensions of the structure are simultaneously optimized in order to explicitly reduce the coupler size while maintaining equal power...
-
Fast surrogate-assisted frequency scaling of planar antennas with circular polarisation
PublicationIn this work, the problem of computationally efficient frequency scaling (re-design) of circular polarisation antennas is addressed using surrogate-assisted techniques. The task is challenging and requires the identification of the optimum geometry parameters to enable the operation of the re-designed structure at a selected (required) centre frequency. This involves handling several performance figures such as the antenna gain,...
-
The contactless method of chip-to-chip high-speed data transmission monitoring
PublicationThis paper presents a technique of decoupling differential signals transmitted in a pair of microstrip lines on a printed circuit board (PCB), using dedicated coupler for high speed data transmission monitoring in chip-to-chip interconnections. The coupler used for signal probing is overlayed on the pair of microstrip lines under test, and provides a signal to the next blocks of the measurement system without disturbing transmission...
-
Electronic and ionic relaxations in strontium-borate glass and glass-ceramics containing bismuth and vanadium oxides
PublicationThe topography, microstructure and electrical properties of strontium-borate glass and SBO glass containing bismuth and vanadium oxides, were studied. The structure was measured using X-ray diffraction (XRD), Energy Dispersive X-ray Spectrometer (EDS) and Scanning electron microscope (SEM) methods. The A.C. complex conductivity was investigated as a function of temperature and frequency. The influence of the quantity of bismuth...
-
Topological modifications for performance improvement and size reduction of wideband antenna structures
PublicationCompact antennas belong to the key components of modern communication systems. Their miniaturization is often achieved by introducing appropriate topological changes such as simple ground plane slots or tapered feeds. More sophisticated modifications are rarely considered in the literature because they normally lead to significant increase of the number of tunable parameters, which makes the antenna design process more challenging....
-
Zero-Pole Approach in Microwave Passive Circuit Design
PublicationIn this thesis, optimization strategies for design of microwave passive structures including filters, couplers, antenna and impedance transformer and construction of various surroogate models utilized to fasten the design proces have been discussed. Direct and hybrid optimization methodologies including space mapping and multilevel algorithms combined with various surrogate models at different levels of fidelity have been utilized...
-
Miniaturized Metal-Mountable U-shaped Inductive-Coupling-Fed UHF RFID Tag Antenna with Defected Microstrip Surface
PublicationThis study presents a novel miniature ultra-high frequency (UHF) radio frequency identification (RFID) tag for metallic objects. Its arrangement includes a U-shaped feeder, which is inductively coupled to two E-type connected patches. Size reduction is achieved by means of utilizing the U-shaped feeder, and introducing a defection in the connection between the two E-type patches. The defection in the connection area between the...
-
Modeling of Common Mode Currents Induced by Motor Cable in Converter Fed AC Motor Drives
PublicationInvestigation of conducted EMI generation in AC motor fed by pulse width modulated frequency converters requires to consider parasitic capacitances in converters, motor windings and feeding cables to be taken into account. Motor voltage transients and related common mode currents are significantly correlated with resonance effects occurring in load circuits. An analysis of frequency converter load impedance-frequency characteristics...
-
AC motor feeding cable consequences on EMC performance of ASD
PublicationHigh level of conducted EMI emissions of adjustable speed drives (ASD) is one of the most difficult problems in contemporary applications. Many investigations are carried out in order to find more effective methods allowing to predict this emission at early stage of design, and therefore to predict adequate countermeasures. This paper deals with the method which allows to estimate by simulation the influence of motor feeding cable...
-
A gap waveguide-based mechanically reconfigurable phase shifter for high-power Ku-band applications
PublicationThis paper presents a novel design of a low-loss, reconfgurable broadband phase shifter based on groove gap waveguide (GGW) technology. The proposed phase shifter consists of a folded GGW and three bends with a few pins forming the GGW and one bend attached to a movable plate. This movable plate allows for adjustments to the folded waveguide length, consequently altering the phase of electromagnetic waves. The advantage of GGW...
-
Femtosecond laser ablated trench array for improving performance of commercial solid oxide cell
PublicationThe performance of electrode-supported solid oxide cells (SOCs) is limited adversely by gas diffusion impedance in thick and porous support. This work focuses on the improvement of gas transport properties of commercial Ni-YSZ anode-supported SOFC by femtosecond laser-based micromachining where micro-holes of identical depth but different hole separations pitches with minimal heated affected zones were imposed. The polarization...
-
Novel Complementary Resonator for Dielectric Characterization of Substrates Based on Permittivity and Thickness
PublicationThis paper presents a novel complementary resonator featuring high sensitivity, low fabrication cost, and improved performance. The proposed structure consists of a complementary concentric square and circular ring resonator (CCSCRR) with multiple splits to enhance the inductance of the resonator. The proposed CCSCRR is coupled to a microstrip transmission line with an impedance of fifty ohms to create a high-sensitivity sensor....
-
A Geometrically Simple Compact Wideband Circularly Polarized Antenna
PublicationA compact broadband wide-slot circular polarization (CP) antenna is proposed. An inverted L-shape parasitic strip at the open end of a microstrip line extension and a slot modification is applied to attain wideband CP. The advantage of this technique is simplicity which makes it readily re-designable for different frequency bands. To demonstrate the concept, three designs working at different frequencies are obtained. The redesign...
-
A novel dual-band rectifier circuit with enhanced bandwidth for RF energy harvesting applications
PublicationIn recent years, a rapid development of low-power sensor networks, enabling machine-to-machine communication in applications such as environmental monitoring, has been observed. Contemporary sensors are normally supplied by an external power source, typically in a form of a battery, which limits their lifespan and increases the maintenance costs. This problem can be addressed by harvesting and converting ambient RF energy into...
-
Low cost set-up for supercapacitors parameters evaluation
PublicationSupercapacitors are capable to store relatively high amount of energy comparing to its mass. Growing number of these devices applications requires development of new testing methods. Standard methods of evaluation of supercapacitor parameters, as cycling voltammetry, CV, galvanostatic cycling with potential limitation, GCPL, impedance measurements, require equipment of high cost...
-
Numerically efficient algorithm for compact microwave device optimization with flexible sensitivity updating scheme
PublicationAn efficient trust-region algorithm with flexible sensitivity updating management scheme for electromagnetic (EM)-driven design optimization of compact microwave components is proposed. During the optimization process, updating of selected columns of the circuit response Jacobian is performed using a rank-one Broyden formula (BF) replacing finite differentiation (FD). The FD update is omitted for directions sufficiently well aligned...
-
Circular polarization diversity implementation for correlation reduction in wideband low-cost multiple-input-multiple-output antenna
PublicationIn this paper, a multiple-input-multiple-output (MIMO) antenna featuring circular polarization diversity, and designed on a common coplanar ground is presented. The proposed antenna design utilizes a coplanar waveguide (CPW) feeding technique with three parallel coplanar ground planes, and two feedlines in-between. For circular polarization (CP), quasi-loops are created by etching slots on the outermost ground planes. With this...
-
Cost-Efficient Multi-Objective Design of Miniaturized Microwave Circuits Using Machine Learning and Artificial Neural Network
PublicationDesigning microwave components involves managing multiple objectives such as center frequencies, impedance matching, and size reduction for miniaturized structures. Traditional multi-objective optimization (MO) approaches heavily rely on computationally expensive population-based methods, especially when exe-cuted with full-wave electromagnetic (EM) analysis to guarantee reliability. This paper introduces a novel and cost-effective...
-
Rapid Simulation-Driven Multiobjective Design Optimization of Decomposable Compact Microwave Passives
PublicationIn this paper, a methodology for fast multiobjective optimization of the miniaturized microwave passives has been presented. Our approach is applicable to circuits that can be decomposed into individual cells [e.g., compact microstrip resonant cells (CMRCs)]. The structures are individually modeled using their corresponding equivalent circuits and aligned with their accurate, EM simulated...
-
A simple route of providing a soft interface for PEDOT: PSS film metallic electrodes without loss of their electrical interface parameters
PublicationThe work presents the development of a soft interface at PEDOT:PSS film without changing its electrical interface parameters. In the first step, PEDOT:PSS is electrodeposited on the commercial platinum electrode under the state-of-the-art conditions desirable for different electrochemical electrodes. Secondly, a pure hydrogel layer is deposited on the top of the electrodeposited PEDOT:PSS film under conditions that provide desirable...
-
Mutual Coupling Reduction in Antenna Arrays Using Artificial Intelligence Approach and Inverse Neural Network Surrogates
PublicationThis paper presents a novel approach to reduce undesirable coupling in antenna arrays using custom-designed resonators and inverse surrogate modeling. To illustrate the concept, two stand-ard patch antenna cells with 0.07λ edge-to-edge distance are designed and fabricated to operate at 2.45 GHz. A stepped-impedance resonator is applied between the antennas to suppress their mutual coupling. For the first time, the optimum values...
-
Design and Optimization of Metamaterial-Based 5G Millimeter Wave Antenna for Gain Enhancement
PublicationIn this brief, a low profile, broadband, high-gain antenna array based on optimized metamaterials (MMs) with dual-beam radiation is reported for 5G millimeters wave (mm-wave) applications. The design is a simple bow tie operating at a 5G band of 28 GHz. It consists of two bow ties with substrate integrated waveguide (SIW)-based power splitter. A broad impedance bandwidth of 26.3−29.8 GHz is obtained by appropriately combining the...
-
A rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamond
PublicationAccording to the World Health Organization (WHO), almost 2 billion people each year are infected worldwide with flu-like pathogens including influenza. This is a contagious disease caused by viruses belonging to the family Orthomyxoviridae. Employee absenteeism caused by flu infection costs hundreds of millions of dollars every year. To successfully treat influenza virus infections, detection of the virus during the initial development...
-
Low-cost data-driven modelling of microwave components using domain confinement and PCA-based dimensionality reduction
PublicationFast data-driven surrogate models can be employed as replacements of computationally demanding full-wave electromagnetic simulations to facilitate the microwave design procedures. Unfortunately, practical application of surrogate modelling is often hindered by the curse of dimensionality and/or considerable nonlinearity of the component characteristics. This paper proposes a simple yet reliable approach to cost-efficient modelling...
-
An Innovative Antenna Array with High Inter Element Isolation for Sub-6 GHz 5G MIMO Communication Systems
PublicationA novel technique is shown to improve the isolation between radiators in antenna arrays. The proposed technique suppresses the surface-wave propagation and reduces substrate loss thereby enhancing the overall performance of the array. This is achieved without affecting the antenna’s footprint. The proposed approach is demonstrated on a four-element array for 5G MIMO applications. Each radiating element in the array is constituted...
-
Assessment of Fuel Cells’ State of Health by Low-Frequency Noise Measurements
PublicationWe proposed applying low-frequency (flicker) noise in proton-exchange membrane fuel cells under selected loads to assess their state of health. The measurement set-up comprised a precise data acquisition board and was able to record the DC voltage and its random component at the output. The set-up estimated the voltage noise power spectral density at frequencies up to a few hundred mHz. We observed the evolution of the electrical...
-
Efficient Simulation-Based Global Antenna Optimization Using Characteristic Point Method and Nature-Inspired Metaheuristics
PublicationAntenna structures are designed nowadays to fulfil rigorous demands, including multi-band operation, where the center frequencies need to be precisely allocated at the assumed targets while improving other features, such as impedance matching. Achieving this requires simultaneous optimization of antenna geometry parameters. When considering multimodal problems or if a reasonable initial design is not at hand, one needs to rely...
-
Advanced Sensor for Non-Invasive Breast Cancer and Brain Cancer Diagnosis Using Antenna Array with Metamaterial-Based AMC
PublicationMicrowave imaging techniques can identify abnormal cells in early development stages. This study introduces a microstrip patch antenna coupled with artificial magnetic conductor (AMC) to realize improved sensor for non-invasive (early-stage) breast cancer and brain cancer diagnosis. The frequency selectivity of the proposed antenna has been increased by the presence of AMC by creating an additional resonance at 2.276 GHz associated...
-
A new approach to a fast and accurate design of microwave circuits with complex topologies
PublicationA robust simulation-driven design methodology of microwave circuits with complex topologies has been presented. The general method elaborated is suitable for a wide class of N-port unconventional microwave circuits constructed as a deviation from classic design solutions. The key idea of the approach proposed lies in an iterative redesign of a conventional circuit by a sequential modification and optimisation of its atomic building...
-
Assessment of Supercapacitor’s Quality by Means of Low Frequency Noise
PublicationLow frequency noise is a well-known tool for quality and reliability assessment of electronic devices. This phenomenon is observed in different electrochemical devices as well (e.g., smart windows, electrochemical corrosion processes). Thus, we can assume that the same tool can be used to asses quality of supercapacitors. Their quality is usually determined only by capacitance and/or equivalent series resistance (ESR), or impedance....