Search results for: artificial intelligence, machine learning, cnn, neural networks, optimization algorithms - Bridge of Knowledge

Search

Search results for: artificial intelligence, machine learning, cnn, neural networks, optimization algorithms

Search results for: artificial intelligence, machine learning, cnn, neural networks, optimization algorithms

  • Sensors and Sensor’s Fusion in Autonomous Vehicles

    Publication

    - SENSORS - Year 2021

    Autonomous vehicle navigation has been at the center of several major developments, both in civilian and defense applications. New technologies such as multisensory data fusion, big data processing, and deep learning are changing the quality of areas of applications, improving the sensors and systems used. New ideas such as 3D radar, 3D sonar, LiDAR, and others are based on autonomous vehicle revolutionary development. The Special...

    Full text available to download

  • Roman Śmierzchalski prof. dr hab. inż.

    Roman Śmierzchalski born in 1956 in Gdynia. He received the M.Sc. degree in 1979, the Ph.D. degree in 1989, both from the Gdańsk University of Technology, and the D.Sc. (‘habilitation’) degree in 1999 from the Warsaw University of Technology. From 1980 to 2009 he was an academic teacher and researcher with the Gdynia Maritime University, and since 2009 he has been with the Gdansk University of Technology, where he is currently...

  • Team Strategies - sem. 2022/23

    e-Learning Courses
    • T. Białaszewski

    The main aim of the course is to familiarize students with the basic problems in team strategies, such as: the use of the particle swarm optimization algorithms, the ant colony optimization, stochastic distributed searches, algorithms for team strategy, multi-agent systems, modeling intelligent cooperation, simulations of social behavior. The form of passing the course is passing the exam and completing a project task

  • Team Strategies - sem. 2023/24

    e-Learning Courses
    • T. Białaszewski

    The main aim of the course is to familiarize students with the basic problems in team strategies, such as: the use of the particle swarm optimization algorithms, the ant colony optimization, stochastic distributed searches, algorithms for team strategy, multi-agent systems, modeling intelligent cooperation, simulations of social behavior. The form of passing the course is passing the exam and completing a project task

  • Team Strategies - sem. 2024/25

    e-Learning Courses
    • T. Białaszewski

    The main aim of the course is to familiarize students with the basic problems in team strategies, such as: the use of the particle swarm optimization algorithms, the ant colony optimization, stochastic distributed searches, algorithms for team strategy, multi-agent systems, modeling intelligent cooperation, simulations of social behavior. The form of passing the course is passing the exam and completing a project task

  • Vehicle detector training with labels derived from background subtraction algorithms in video surveillance

    Publication

    - Year 2018

    Vehicle detection in video from a miniature station- ary closed-circuit television (CCTV) camera is discussed in the paper. The camera provides one of components of the intelligent road sign developed in the project concerning the traffic control with the use of autonomous devices being developed. Modern Convolutional Neural Network (CNN) based detectors need big data input, usually demanding their manual labeling. In the presented...

  • Neural Network Subgraphs Correlation with Trained Model Accuracy

    Publication

    - Year 2020

    Neural Architecture Search (NAS) is a computationally demanding process of finding optimal neural network architecture for a given task. Conceptually, NAS comprises applying a search strategy on a predefined search space accompanied by a performance evaluation method. The design of search space alone is expected to substantially impact NAS efficiency. We consider neural networks as graphs and find a correlation between the presence...

    Full text to download in external service

  • Ahmed Lakhdar Kouzou

    People

    Phd Student at Faculty of Electrical and Control Engineering, Gdansk University of Technology . His main areas of research and interests include he application of meta-heuristic optimization algorithms in electric power systems. He served as temporary researsh assitant at Texas A&M University at Qatar. He received his Bachalor’s degree in Electrical and Electronic Engineering in 2017 from the Institute of Electrical &...

  • Exploring the influence of personal factors on physiological responses to mental imagery in sport

    Publication

    - Scientific Reports - Year 2023

    Imagery is a well-known technique in mental training which improves performance efficiency and influences physiological arousal. One of the biomarkers indicating the amount of physiological arousal is skin conductance level (SCL). The aim of our study is to understand how individual differences in personality (e.g. neuroticism), general imagery and situational sport anxiety are linked to arousal measuring with SCL in situational...

    Full text available to download

  • An electronic nose for quantitative determination of gas concentrations

    Publication

    The practical application of human nose for fragrance recognition is severely limited by the fact that our sense of smell is subjective and gets tired easily. Consequen tly, there is considerable need for an instrument that can be a substitution of the human sense of smell. Electronic nose devices from the mid 1980s are used in growing number of applications. They comprise an array of several electrochemical gas sensors...

    Full text to download in external service

  • Australian Conference on Neural Networks

    Conferences

  • International Symposium on Neural Networks

    Conferences

  • World Congress on Neural Networks

    Conferences

  • Vehicle detector training with minimal supervision

    Publication

    - Year 2019

    Recently many efficient object detectors based on convolutional neural networks (CNN) have been developed and they achieved impressive performance on many computer vision tasks. However, in order to achieve practical results, CNNs require really large annotated datasets for training. While many such databases are available, many of them can only be used for research purposes. Also some problems exist where such datasets are not...

  • Data Domain Adaptation in Federated Learning in the Breast Mammography Image Classification Problem

    We are increasingly striving to introduce modern artificial intelligence techniques in medicine and elevate medical care, catering to both patients and specialists. An essential aspect that warrants concurrent development is the protection of personal data, especially with technology's advancement, along with addressing data disparities to ensure model efficacy. This study assesses various domain adaptation techniques and federated...

    Full text to download in external service

  • Improvement of speech intelligibility in the presence of noise interference using the Lombard effect and an automatic noise interference profiling based on deep learning

    Publication
    • K. Kąkol

    - Year 2023

    The Lombard effect is a phenomenon that results in speech intelligibility improvement when applied to noise. There are many distinctive features of Lombard speech that were recalled in this dissertation. This work proposes the creation of a system capable of improving speech quality and intelligibility in real-time measured by objective metrics and subjective tests. This system consists of three main components: speech type detection,...

    Full text available to download

  • Fuzzy Gaussian Decision Tree

    Publication

    - JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS - Year 2023

    The Decision Tree algorithm is one of the first machine learning algorithms developed. It is used both as a standalone model and as an ensemble of many cooperating trees like Random Forest, AdaBoost, Gradient Boosted Trees, or XGBoost. In this work, a new version of the Decision Tree was developed for classifying real-world signals using Gaussian distribution functions and a fuzzy decision process. The research was carried out...

    Full text to download in external service

  • Document Agents with the Intelligent Negotiations Capability

    Publication

    The paper focus is on augmenting proactive document-agents with built -in intelligence to enable them to recognize execution context provided by devices visited durning the business process, and to reach collaboration agreement despite of their conflicting requirements. We propose a solution based on neural networks to improve simple multi-issue negotiation between the document and the device, practically with no excessive cost...

  • CNN-CLFFA: Support Mobile Edge Computing in Transportation Cyber Physical System

    Publication
    • A. Bhansali
    • R. Kumar Patra
    • P. Bidare Divakarachari
    • P. Falkowski-Gilski
    • G. Shivakanth
    • S. N. Patil

    - IEEE Access - Year 2024

    In the present scenario, the transportation Cyber Physical System (CPS) improves the reliability and efficiency of the transportation systems by enhancing the interactions between the physical and cyber systems. With the provision of better storage ability and enhanced computing, cloud computing extends transportation CPS in Mobile Edge Computing (MEC). By inspecting the existing literatures, the cloud computing cannot fulfill...

    Full text available to download

  • Automatic Rhythm Retrieval from Musical Files

    Publication

    - Year 2008

    This paper presents a comparison of the effectiveness of two computational intelligence approaches applied to the task of retrieving rhythmic structure from musical files. The method proposed by the authors of this paper generates rhythmic levels first, and then uses these levels to compose rhythmic hypotheses. Three phases: creating periods, creating simplified hypotheses and creating full hypotheses are examined within this study....

    Full text to download in external service

  • Modelowanie przepływu pary przez okołodźwiękowe wieńce turbinowe z użyciem sztucznych sieci neuronoych

    Publication

    Niniejszy artykuł stanowi opis modelu przepływu pary przez okołodźwiękowe stopnie turbinowe, stworzonego w oparciu o sztuczne sieci neuronowe (SSN). Przedstawiony model neuronowy pozwala na wyznaczenie rozkładu wybranych parametrów w analizowanym przekroju kanału przepływowego turbiny dla rozpatrywanego zakresu wartości ciśnienia wlotowego.

    Full text available to download

  • Adaptive Hounsfield Scale Windowing in Computed Tomography Liver Segmentation

    Publication

    In computed tomography (CT) imaging, the Hounsfield Unit (HU) scale quantifies radiodensity, but its nonlinear nature across organs and lesions complicates machine learning analysis. This paper introduces an automated method for adaptive HU scale windowing in deep learning-based CT liver segmentation. We propose a new neural network layer that optimizes HU scale window parameters during training. Experiments on the Liver Tumor...

    Full text to download in external service

  • Joint workshop on Multimodal Interaction and Related Machine Learning Algorithms (now ICMI-MLMI)

    Conferences

  • Chemiresistive gas sensors based on carbon nanotubes - fabrication and application

    Many types of sensors have been invented to identify and quantify chemical contamination in the gas phase. Sensors based on carbon nanotubes are particularly attractive because of their wide range of applicaions and potential use in electronic nose that can be controlled using algorithms of Artificial Intelligence. Sensor functions, fabrication and selected applications are reviewed and discussed with focus on chemiresistors. Drawbacks...

  • Marek Czachor prof. dr hab.

  • A Survey on the Datasets and Algorithms for Satellite Data Applications

    This survey compiles insights and describes datasets and algorithms for applications based on remote sensing. The goal of this review is twofold: datasets review for particular groups of tasks and high-level steps of data flow between satellite instruments and end applications from an implementation and development perspective. The article outlines the generalized data processing pipelines, taking into account the variations in...

    Full text to download in external service

  • Surface EMG-based signal acquisition for decoding hand movements

    Open Research Data
    open access

    Biosignal processing plays a crucial role in modern hand prosthetics. The challenge is to restore functionality of a lost limb based on the signals acquired from the surface of the stump. The number of sensors (emg channels) used for signal acquisition influence the quality of a prosthetic hand. Modern algorithms (including neural networks) can significantly...

  • An Improved Convolutional Neural Network for Steganalysis in the Scenario of Reuse of the Stego-Key

    Publication

    - Year 2019

    The topic of this paper is the use of deep learning techniques, more specifically convolutional neural networks, for steganalysis of digital images. The steganalysis scenario of the repeated use of the stego-key is considered. Firstly, a study of the influence of the depth and width of the convolution layers on the effectiveness of classification was conducted. Next, a study on the influence of depth and width of fully connected...

    Full text to download in external service

  • Optimisation of turbine shaft heating process under steam turbine run-up conditions

    Publication

    - Archives of Thermodynamics - Year 2020

    An important operational task for thermal turbines during run-up and run-down is to keep the stresses in the structural elements at a right level. This applies not only to their instantaneous values, but also to the impact of them on the engine lifetime. The turbine shaft is a particularly important element. The distribution of stresses depends on geometric characteristics of the shaft and its specific locations. This means a groove manufactured...

    Full text available to download

  • Evolving neural network as a decision support system — Controller for a game of “2048” case study

    Publication

    The paper proposes an approach to designing the neuro-genetic self-learning decision support system. The system is based on neural networks being adaptively learned by evolutionary mechanism, forming an evolved neural network. Presented learning algorithm enables for a selection of the neural network structure by establishing or removing of connections between the neurons, and then for a finding the beast suited values of the network...

    Full text to download in external service

  • Ontology-based text convolution neural network (TextCNN) for prediction of construction accidents

    Publication
    • S. Donghui
    • L. Zhigang
    • J. Zurada
    • A. Manikas
    • J. Guan
    • P. Weichbroth

    - KNOWLEDGE AND INFORMATION SYSTEMS - Year 2024

    The construction industry suffers from workplace accidents, including injuries and fatalities, which represent a significant economic and social burden for employers, workers, and society as a whole.The existing research on construction accidents heavily relies on expert evaluations,which often suffer from issues such as low efficiency, insufficient intelligence, and subjectivity.However, expert opinions provided in construction...

    Full text available to download

  • Highlighting interlanguage phoneme differences based on similarity matrices and convolutional neural network

    Publication

    - Journal of the Acoustical Society of America - Year 2021

    The goal of this research is to find a way of highlighting the acoustic differences between consonant phonemes of the Polish and Lithuanian languages. For this purpose, similarity matrices are employed based on speech acoustic parameters combined with a convolutional neural network (CNN). In the first experiment, we compare the effectiveness of the similarity matrices applied to discerning acoustic differences between consonant...

    Full text available to download

  • Intelligence Augmentation and Amplification: Approaches, Tools, and Case Studies

    Publication

    - CYBERNETICS AND SYSTEMS - Year 2022

    Most experts agree that truly intelligent artificial system is yet to be developed. The main issue that still remains a challenge is imposing trust and explainability into such systems. However, is full replication of human intelligence really desirable key aim in intelligence related technology and research? This is where the concept of augmented intelligence comes into play. It is an alternative conceptualization of artificial...

    Full text available to download

  • Rotor Blade Geometry Optimisation in Kaplan Turbine

    Publication

    The paper presents the description of method and results of rotor blade shape optimisation. The rotor blading constitutes a part ofturbine flow path. Optimisation consists in selection of the shape that minimises ratio of polytrophic loss. Shape of the blade isdefined by the mean camber line and thickness of the airfoil. Thickness is distributed around the camber line based on the ratio ofdistribution. Global optimisation was done...

    Full text available to download

  • Thermal Images Analysis Methods using Deep Learning Techniques for the Needs of Remote Medical Diagnostics

    Publication

    - Year 2020

    Remote medical diagnostic solutions have recently gained more importance due to global demographic shifts and play a key role in evaluation of health status during epidemic. Contactless estimation of vital signs with image processing techniques is especially important since it allows for obtaining health status without the use of additional sensors. Thermography enables us to reveal additional details, imperceptible in images acquired...

    Full text available to download

  • Automatic music set organizatio based on mood of music / Automatyczna organizacja bazy muzycznej na podstawie nastroju muzyki

    This work is focused on an approach based on the emotional content of music and its automatic recognition. A vector of features describing emotional content of music was proposed. Additionally, a graphical model dedicated to the subjective evaluation of mood of music was created. A series of listening tests was carried out, and results were compared with automatic mood recognition employing SOM (Self Organizing Maps) and ANN (Artificial...

    Full text to download in external service

  • Uczenie maszynowe do samoorganizacji systemów rozproszonych w zastosowaniach gospodarczych

    Publication

    - Współczesna Gospodarka - Year 2017

    W pracy omówiono uczenie maszynowe do samoorganizacji systemów rozproszonych w zastosowaniach gospodarczych ze szczególnym uwzględnieniem sieci neuronowych do predykcji finansowych oraz szacowania ratingu przedsiębiorstw. Oprócz sieci neuronowych, istotną rolę w przygotowaniu i testowaniu informatycznych systemów finansowych może pełnić programowanie genetyczne. Z tego powodu omówiono uczenie maszynowe w aplikacjach konstruowanych...

    Full text available to download

  • Międzynarodowa Szkoła Letnia na temat algorytmów

    Events

    06-07-2020 08:30 - 11-07-2020 17:00

    Katedra Algorytmów i Modelowania Systemów WETI PG organizuje 4. edycję Międzynarodowej Szkoły Letniej na temat algorytmów dla problemów optymalizacji dyskretnej i głębokiego uczenia

  • Paweł Rościszewski dr inż.

    People

    Paweł Rościszewski received his PhD in Computer Science at Gdańsk University of Technology in 2018 based on PhD thesis entitled: "Optimization of hybrid parallel application execution in heterogeneous high performance computing systems considering execution time and power consumption". Currently, he is an Assistant Professor at the Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Poland....

  • Automatic labeling of traffic sound recordings using autoencoder-derived features

    Publication

    An approach to detection of events occurring in road traffic using autoencoders is presented. Extensions of existing algorithms of acoustic road events detection employing Mel Frequency Cepstral Coefficients combined with classifiers based on k nearest neighbors, Support Vector Machines, and random forests are used. In our research, the acoustic signal gathered from the microphone placed near the road is split into frames and converted...

  • Online sound restoration system for digital library applications

    Audio signal processing algorithms were introduced to the new online non-commercial service for audio restoration intended to enhance the content of digitized audio repositories. Missing or distorted audio samples are predicted using neural networks and a specific implementation of the Jannsen interpolation method based on the autoregressive model (AR) combined with the iterative restoring of missing signal samples. Since the distortion...

    Full text to download in external service

  • IEEE International Conference on Neural Networks

    Conferences

  • Audio Feature Analysis for Precise Vocalic Segments Classification in English

    Publication

    An approach to identifying the most meaningful Mel-Frequency Cepstral Coefficients representing selected allophones and vocalic segments for their classification is presented in the paper. For this purpose, experiments were carried out using algorithms such as Principal Component Analysis, Feature Importance, and Recursive Parameter Elimination. The data used were recordings made within the ALOFON corpus containing audio signal...

    Full text to download in external service

  • WYKORZYSTANIE SIECI NEURONOWYCH DO SYNTEZY MOWY WYRAŻAJĄCEJ EMOCJE

    Publication

    - Year 2018

    W niniejszym artykule przedstawiono analizę rozwiązań do rozpoznawania emocji opartych na mowie i możliwości ich wykorzystania w syntezie mowy z emocjami, wykorzystując do tego celu sieci neuronowe. Przedstawiono aktualne rozwiązania dotyczące rozpoznawania emocji w mowie i metod syntezy mowy za pomocą sieci neuronowych. Obecnie obserwuje się znaczny wzrost zainteresowania i wykorzystania uczenia głębokiego w aplikacjach związanych...

  • Simulating Power Generation from Photovoltaics in the Polish Power System Based on Ground Meteorological Measurements—First Tests Based on Transmission System Operator Data

    Publication

    - ENERGIES - Year 2020

    The Polish power system is undergoing a slow process of transformation from coal to one that is renewables dominated. Although coal will remain a fundamental fuel in the coming years, the recent upsurge in installed capacity of photovoltaic (PV) systems should draw significant attention. Owning to the fact that the Polish Transmission System Operator recently published the PV hourly generation time series in this article, we aim...

    Full text available to download

  • Early warning models against bankruptcy risk for Central European and Latin American enterprises

    Publication

    This article is devoted to the issue of forecasting the bankruptcy risk of enterprises in Latin America and Central Europe. The author has used statistical and soft computing methods to program the prediction models. It compares the effectiveness of twelve different early warningmodels for forecasting the bankruptcy risk of companies. In the research conducted, the author used data on 185 companies listed on the Warsaw Stock Exchange...

    Full text to download in external service

  • Paweł Burdziakowski dr inż.

    Paweł Burdziakowski, PhD, is a professional in low-altitude aerial photogrammetry and remote sensing, marine and aerial navigation. He is also a licensed flight instructor and software developer. His main areas of interest are digital photogrammetry, navigation of unmanned platforms and unmanned systems, including aerial, surface, underwater. He conducts research in algorithms and methods to improve the quality of spatial measurements...

  • Control of the cultivation of cartilages for using in the biobearings.

    Publication

    - Year 2004

    Biotribologiczne charakterystyki biołożysk są zależne od procesu hodowli żywej tkanki chrząstki w bioreaktorze. Z kolei proces ten, jest wielowymiarowym procesem dynamicznym sterowanym za pomocą odpowiedniego układu automatycznej regulacji. Praca przedstawia prawo i algorytm sterowania takiego procesu. W tym celu zastosowano sztuczne sieci neuronowe (Artificial Neural Networks - ANN) i zaprezentowano wyniki obliczeń.

  • Experience-Based Cognition for Driving Behavioral Fingerprint Extraction

    Publication

    - CYBERNETICS AND SYSTEMS - Year 2020

    ABSTRACT With the rapid progress of information technologies, cars have been made increasingly intelligent. This allows cars to act as cognitive agents, i.e., to acquire knowledge and understanding of the driving habits and behavioral characteristics of drivers (i.e., driving behavioral fingerprint) through experience. Such knowledge can be then reused to facilitate the interaction between a car and its driver, and to develop better and...

    Full text available to download

  • Reduced-Cost Microwave Design Closure by Multi-Resolution EM Simulations and Knowledge-Based Model Management

    Parameter adjustment through numerical optimization has become a commonplace of contemporary microwave engineering. Although circuit theory methods are ubiquitous in the development of microwave components, the initial designs obtained with such tools have to be further tuned to improve the system performance. This is particularly pertinent to miniaturized structures, where the cross-coupling effects cannot be adequately accounted...

    Full text available to download