Filters
total: 10663
-
Catalog
- Publications 5582 available results
- Journals 223 available results
- Conferences 34 available results
- Publishing Houses 2 available results
- People 700 available results
- Inventions 36 available results
- Projects 98 available results
- Laboratories 5 available results
- Research Teams 35 available results
- Research Equipment 12 available results
- e-Learning Courses 2036 available results
- Events 38 available results
- Offers 1 available results
- Open Research Data 1861 available results
displaying 1000 best results Help
Search results for: marine%20robotics
-
Local advisory councils in deliberative decision-making. Findings from research in Polish cities
Publication -
A Data Driven Model for Predicting RNA-Protein Interactions based on Gradient Boosting Machine
Publication -
Regarding the “Review of surgical techniques and guide for decision making in the treatment of benign parotid tumors”
Publication -
The Conception of Decision-Making Support System for ComplexEnergetic System on Example of Ship Propulsion System
PublicationIn paper, the conception of decision-making support system for complex energetic system on example of ship propulsion system has been presented. Diversity of conditions, information overload and very often contradiction of decision-making criteria and time constraints result in difficulties in making right (rational) decision without using more or less expanded information processing systems (eg. database systems, expert systems,...
-
A FPTAS for minimizing total completion time in a single machine time-dependent scheduling problem
PublicationIn this paper a single machine time-dependent scheduling problem with total completion time criterion is considered. There are given n jobs J1,…,Jn and the processing time pi of the ith job is given by pi=a+bisi, where si is the starting time of the ith job (i=1,…,n),bi is its deterioration rate and a is the common base processing time. If all jobs have deterioration rates different and not smaller than a certain constant u>0,...
-
Mechanical Behavior of Plastic Strips-Reinforced Expansive Soils Stabilized with Waste Marble Dust
PublicationExpansive soil needs to undergo treatment to be used as safe foundation soil for roads and buildings. From environmental conservation and economical point of view, the usage of agricultural and industrial wastes is the best option. In this study, the effects of utilizing plastic waste and marble waste dust on the engineering properties of expansive soils were examined. Various laboratory tests were carried out on sampled expansive...
-
Machine Learning for Control Systems Security of Industrial Robots: a Post-covid-19 Overview
Publication -
Likelihood of Transformation to Green Infrastructure Using Ensemble Machine Learning Techniques in Jinan, China
Publication -
Detection of circulating tumor cells by means of machine learning using Smart-Seq2 sequencing
Publication -
Machine learning goes global: Cross-sectional return predictability in international stock markets
Publication -
Risk-averse decision-making to maintain supply chain viability under propagated disruptions
Publication -
Optimal selection of the sawdust separation device for a narrow-kerf sawing machine PRW15-M
PublicationW pracy przedstawiono granulometryczną analizę rozkładu wiórów i pyłu drzewnego otrzymanego w procesie przecinania suchych pryzm sosnowych na pilarce ramowej wielopiłowej PRW15-M. Wielkości wiórów mieściły się w granicach od 84,7 μm do nawet 14 mm. Te ostatnie są elementami będącymi efektem rozszczepiania dolnej powierzchni pryzmy przez wychodzące z niej ostrza piły. Większośc wiórów z najmniejszych frakcji ma postać sześciennych...
-
Machine-learning methods for estimating compressive strength of high-performance alkali-activated concrete
PublicationHigh-performance alkali-activated concrete (HP-AAC) is acknowledged as a cementless and environmentally friendly material. It has recently received a substantial amount of interest not only due to the potential it has for being used instead of ordinary concrete but also owing to the concerns associated with climate change, sustainability, reduction of CO2 emissions, and energy consumption. The characteristics and amounts of the...
-
Analyzing the relationship between sound, color, and emotion based on subjective and machine-learning approaches
PublicationThe aim of the research is to analyze the relationship between sound, color, and emotion. For this purpose, a survey application was prepared, enabling the assignment of a color to a given speaker’s/singer’s voice recordings. Subjective tests were then conducted, enabling the respondents to assign colors to voice/singing samples. In addition, a database of voice/singing recordings of people speaking in a natural way and with expressed...
-
Game theory-based virtual machine migration for energy sustainability in cloud data centers
PublicationAs the demand for cloud computing services increases, optimizing resource allocation and energy consumption has become a key factor in achieving sustainability in cloud environments. This paper presents a novel approach to address these challenges through an optimized virtual machine (VM) migration strategy that employs a game-theoretic approach based on particle swarm optimization (PSO) (PSO-GTA). The proposed approach leverages...
-
From Data to Decision: Interpretable Machine Learning for Predicting Flood Susceptibility in Gdańsk, Poland
PublicationFlood susceptibility prediction is complex due to the multifaceted interactions among hydrological, meteorological, and urbanisation factors, further exacerbated by climate change. This study addresses these complexities by investigating flood susceptibility in rapidly urbanising regions prone to extreme weather events, focusing on Gdańsk, Poland. Three popular ML techniques, Support Vector Machine (SVM), Random Forest (RF), and...
-
Comparative studies of manufacturing strategies within multi-machine production systems using simulation
PublicationZaprezentowano metodykę budowy struktur przestrzennych systemów produkcji typu gniazdowego wg zasad technologii grupowej, wykorzystując zaproponowane modele i algorytmy analizy zbiorów/relacji rozmytych. Generowane, z wykorzystaniem tych algorytmów, przebiegi procesów porównywano z przebiegami procesów w strukturach przestrzennych typu hybrydowego, tj. o wspólnych zasobach. Odnosząc się do zdefiniowanego studium przypadku, wykazano...
-
Quality evaluation of computer aided information retrieval from machine typed paper documents
PublicationCelem międzynarodowego projektu memorial jest wspomagane komputerowo rozpoznawanie maszynopisów. Referat prezentuje zagadnienie pomiaru jakości takiego procesu. Wskazano w nim potencjalne miejsca pojawiania się błędów oraz przedstawiono i sklasyfikowano odpowiednie miary.
-
Spiritual care competence and caring abilities among Polish nurses: a correlation descriptive study
Publication -
Ultra-rare ultra-care: Assessing the impact of caring for children with ultra rare diseases
Publication -
The Problems of Application of PVD/CVD Thin Hard Coatings for Heavy-Loaded Machine Components
Publication -
SIMULATION AND EXPERIMENTAL RESEARCH OF CLAW POLE MACHINE WITH A HYBRID EXCITATION AND LAMINATED ROTOR CORE
Publication -
Endophytic microbiota and ectomycorrhizal structure of Alnus glutinosa Gaertn. at saline and nonsaline forest sites
Publication -
The oil film parameters of the wankel engine apex seal in aspects of durability of mating elements
PublicationThe Wankel engine is one of only few alternatives to the reciprocating engines. The advantages such as good value of maximum engine power to its mass ratio are still present and can have great sense in selected fields of application, for example General Aviation. Nevertheless the disadvantages of the Wankel engine design have never lost its importance and still pose an obstacle to wider use of the Wankel engine. One of the main...
-
A framework estimating the minimum sample size and margin of error for maritime quantitative risk analysis
PublicationThe average accident frequency is essential for quantitative risk analysis and is conventionally estimated from accident statistics. This paper has systematically synthesised the knowledge on statistical errors and offered the missing instructions, a framework, for determining the minimum sample size and the margin of error (MOE) when calculating the average accident frequency from an accident database at hand. We have applied...
-
Forewarned Is Forearmed: Machine Learning Algorithms for the Prediction of Catheter-Induced Coronary and Aortic Injuries
PublicationCatheter-induced dissections (CID) of coronary arteries and/or the aorta are among the most dangerous complications of percutaneous coronary procedures, yet the data on their risk factors are anecdotal. Logistic regression and five more advanced machine learning techniques were applied to determine the most significant predictors of dissection. Model performance comparison and feature importance ranking were evaluated. We identified...
-
A machine learning approach to classifying New York Heart Association (NYHA) heart failure
PublicationAccording to the European Society of Cardiology, globally the number of patients with heart failure nearly doubled from 33.5 million in 1990 to 64.3 million in 2017, and is further projected to increase dramatically in this decade, still remaining a leading cause of morbidity and mortality. One of the most frequently applied heart failure classification systems that physicians use is the New York Heart Association (NYHA) Functional...
-
Detection of circulating tumor cells by means of machine learning using Smart-Seq2 sequencing
PublicationCirculating tumor cells (CTCs) are tumor cells that separate from the solid tumor and enter the bloodstream, which can cause metastasis. Detection and enumeration of CTCs show promising potential as a predictor for prognosis in cancer patients. Furthermore, single-cells sequencing is a technique that provides genetic information from individual cells and allows to classify them precisely and reliably. Sequencing data typically...
-
Fast Machine-Learning-Enabled Size Reduction of Microwave Components Using Response Features
PublicationAchieving compact size has emerged as a key consideration in modern microwave design. While structural miniaturization can be accomplished through judicious circuit architecture selection, precise parameter tuning is equally vital to minimize physical dimensions while meeting stringent performance requirements for electrical characteristics. Due to the intricate nature of compact structures, global optimization is recommended,...
-
Techniki szybkiego prototypowania w budowie maszyn = Rapid prototyping techniques in machine building
PublicationW artykule omówiono przygotowanie oraz wykonanie poszczególnych elementów maszyn za pomocą techniki szybkiego prototypowania. W pierwszej części przedstawiono technologię wydruku przestrzennego oraz właściwości materiału budulcowego. Druga część artykułu została poświęcona przykładowym wydrukom i ich zastosowaniom w maszynach.
-
Sensorless control system of induction machine supplied by voltage source inverter with output filter
PublicationThe paper focuses on sensorless control of the induction machines supplied by inverter with the output filters. “The novel” idea of the speed observer which is based on the backstepping approach is shown. The standard structure of the exponential observer is extended by the integrators and additional Z vector. The simulation and experimental results validate the proposed solution.
-
Implication of the disulfide bridge in trypsin inhibitor SFTI-1 in its interaction with serine proteinases
PublicationFourteen monocyclic analogues of trypsin inhibitor SFTI-1 isolated from sunflower seeds were synthesized by the solid-phase method. The purpose of this work was to establish the role of a disulfide bridge present in inhibitor's side chains of Cys3 and Cys11 in association with serine proteinases. This cyclic fragment was replaced by the disulfide bridges formed by L-pencillamine (Pen), homo-L-cysteine (Hcy), N-sulfanylethylglycine...
-
A decision-making module for aiding ship system automation design; A knowledge-based approach
PublicationZastosowanie elementów sztucznej inteligencji, w tym systemów z bazą wiedzy staje się coraz bardziej powszechne przy komputerowo wspomaganym projektowaniu. Proces projektowy związany jest z wieloma problemami decyzyjnymi, jak: wybór struktury podsystemu, podzespołów czy też elementów składowych. Z tego względu zdecydowano się opracować system z bazą wiedzy z modułem wspirającym proces podejmowania decyzji.W artykule przedstawiono...
-
Designing Aggregate KPIs as a Method of Implementing Decision-Making Processes in the Management of Smart Cities
PublicationThe aim of the paper is to present a concept of measuring the performance of city management processes by use of a concept of aggregate KPIs. In the management of organizations and, as a consequence of the use of a common design framework also in the management of cities, silo KPIs are commonly used to show the statuses of the processes of organizations/cities. Thus the question arises as to what extent aggregate KPIs, as proposed...
-
The forecasts-based instrument rule and decision making. How closely interlinked? The case of Sweden
PublicationResearch background: The Central Bank of Sweden declared in years 1999–2006 the implementation of the Svensson’s concept of inflation forecast targeting (IFT). It means that the repo rate decision-making process depends on the inflation forecasts. The concept evolved from the strict IFT with the decision-making algorithm called ‘the rule of thumb’ to the flexible IFT. Purpose of the article: The aim of...
-
3D Machine Vision System for Inspection of Contact Strips in Railway Vehicle Current Collectors
PublicationConstruction and technical condition of current collectors is crucial to reliability and safety of railway transportation. According to the Technical Specifications for Interoperability railway vehicles in the European Union should be equipped with carbon contact strips. Excessive wear or defects of contact strips degrade the capability of undisturbed power transmission, cause faster wear of contact wire, and can even result in...
-
SSFR Test of Synchronous Machine for Different Saturation Levels using Finite-Element Method
PublicationIn this paper the StandStill Frequency Response characteristics (SSFR) of saturated synchronous generator (SG) have been calculated using Finite Element Method (FEM) analysis. In order to validate proposed approach for unsaturated conditions FEM simulation from Flux2D software has been compared with the measurements performed on the 10 kVA, 4- poles synchronous machine ELMOR GCe64a of salient rotor construction, equipped with a...
-
Neural Networks, Support Vector Machine and Genetic Algorithms for Autonomous Underwater Robot Support
PublicationIn this paper, artificial neural networks, a classification technique called support vector machine and meta-heuristics genetic algorithm have been considered for development in autonomous underwater robots. Artificial neural networks have been used for seabed modelling as well as support vector machine has been applied for the obstacles classification to avoid some collision problems. Moreover, genetic algorithm has been applied...
-
Machine Learning and Text Analysis in an Artificial Intelligent System for the Training of Air Traffic Controllers
PublicationThis chapter presents the application of new information technology in education for the training of air traffic controllers (ATCs). Machine learning, multi-criteria decision analysis, and text analysis as the methods of artificial intelligence for ATCs training have been described. The authors have made an analysis of the International Civil Aviation Organization documents for modern principles of ATCs education. The prototype...
-
A Data Driven Model for Predicting RNA-Protein Interactions based on Gradient Boosting Machine
PublicationRNA protein interactions (RPI) play a pivotal role in the regulation of various biological processes. Experimental validation of RPI has been time-consuming, paving the way for computational prediction methods. The major limiting factor of these methods has been the accuracy and confidence of the predictions, and our in-house experiments show that they fail to accurately predict RPI involving short RNA sequences such as TERRA RNA....
-
Advances in Architectures, Big Data, and Machine Learning Techniques for Complex Internet of Things Systems
PublicationTe feld of Big Data is rapidly developing with a lot of ongoing research, which will likely continue to expand in the future. A crucial part of this is Knowledge Discovery from Data (KDD), also known as the Knowledge Discovery Process (KDP). Tis process is a very complex procedure, and for that reason it is essential to divide it into several steps (Figure 1). Some authors use fve steps to describe this procedure, whereas others...
-
Polymeric Bearings as a new base isolation system suitable for mitigating machine-induced vibrations
PublicationThe present paper summarizes the preliminary results of the experimental shaking table investigation conducted in order to verify the effectiveness of a new base isolation system consisting of Polymeric Bearings in reducing strong horizontal machine-induced vibrations. Polymeric Bearing considered in the present study is a prototype base isolation system, which was constructed with the use of a specially prepared flexible polymer...
-
Load effect impact on the exploitation of concrete machine foundations used in the gas and oil industry
PublicationMachine foundations is a critical topic in the gas and oil industry, which design and exploitation require extensive technical knowledge. Machine foundations are the constructions which are intended for mounting on it a specific type of machine. The foundation has to transfer dynamic and static load from machine to the ground. The primary difference between machine foundations and building foundations is that the machine foundations...
-
Dynamically positioned ship steering making use of backstepping method and artificial neural networks
PublicationThe article discusses the issue of designing a dynamic ship positioning system making use of the adaptive vectorial backstepping method and RBF type arti cial neural networks. In the article, the backstepping controller is used to determine control laws and neural network weight adaptation laws. e arti cial neural network is applied at each time instant to approximate nonlinear functions containing parametric uncertainties....
-
Multi-criteria Differential Evolution for Optimization of Virtual Machine Resources in Smart City Cloud
PublicationIn a smart city, artificial intelligence tools support citizens and urban services. From the user point of view, smart applications should bring computing to the edge of the cloud, closer to citizens with short latency. However, from the cloud designer point of view, the trade-off between cost, energy and time criteria requires the Pareto solutions. Therefore, the proposed multi-criteria differential evolution can optimize virtual...
-
Speed Observer Structure of Induction Machine Based on Sliding Super-Twisting and Backstepping Techniques
PublicationThis paper presents an analysis of the two speed observer structures which are based on the backstepping and sliding super twisting approach. The observer stabilizing functions result from the Lyapunov theorem. To obtain the observer tuning gains the observer structure is linearized near the equilibrium point. The rotor angular speed is obtained from non-adaptive dependence. In the sensorless control system structure the classical...
-
Speed observer of induction machine based on backstepping and sliding mode for low‐speed operation
PublicationThis paper presents a speed observer design based on backstepping and slidingmode approaches. The inputs to the observer are the stator current and thevoltage vector components. This observer structure is extended to the integra-tors. The observer stabilizing functions contain the appropriate sliding surfaceswhich result from the Lyapunov function. The rotor angular speed is obtainedfrom the non‐adaptive formula with a sliding...
-
Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures
PublicationMany studies have been performed to put quantifying uncertainties into the seismic risk assessment of reinforced concrete (RC) buildings. This paper provides a risk-assessment support tool for purpose of retrofitting and potential design strategies of RC buildings. Machine Learning (ML) algorithms were developed in Python software by innovative methods of hyperparameter optimization, such as halving search, grid search, random...
-
Sperm segmentation and abnormalities detection during the ICSI procedure using machine learning algorithms
Publication(1) About 15-20% of couples struggle with the problem of infertility. 30 to 40% of these cases are caused by abnormalities in the structure and motility of sperm. Sometimes the only possibility for such people is to use the procedure of artificial insemination. CASA systems are used to increase the efficiency of this procedure by selecting the appropriate sperm cell. (2) This paper presents an approach to the sperm classification...
-
Julien Guthmuller prof. dr hab.
People