Search results for: REFRACTIVE INDEX
-
Spectral reflectance and transmission modeling of multi-cavity Fabry-Pérot interferometer with ZnO thin films
PublicationIn this paper spectral reflectance and transmission of a low-coherence fiber-optic Fabry-Pérot interferometer with thin ZnO layers is analyzed using a multi-cavity approach. In the investigated setup two standard single-mode optical fibers (SMF-28) with thin ZnO films deposited on their end-faces form an extrinsic Fabry-Pérot interferometer with air cavity. Calculations of the spectral response of the interferometer were performed...
-
Thickness and structure change of titanium (IV) oxide thin films synthesized by the sol–gel spin coating method
PublicationTitanium dioxide is a well-known material in nanotechnology, while it provides new opportunities due to its interesting properties, for example, as a semiconductor with a quite significant forbidden band gap energy of 3.2 eV. In this study, thin films of titanium dioxide (TiO2) were synthesized in amorphous and crystallographic systems using the sol–gel process. Atomic Force Microscopy (AFM), Raman spectroscopy and X-ray diffraction...
-
Enhancement of fiber-optic low-coherence Fabry-Pérot interferometer with ZnO ALD films
PublicationIn this paper investigation of the enhanced fiber-optic low coherence Fabry-Pérot interferometer with zinc oxide (ZnO) film deposited by atomic layer deposition (ALD) was presented. Model of the interferometer, which was constructed of single-mode optical fiber with applied ZnO ALD films, was built. The interferometer was also examined by means of experiment. Measurements were performed for both reflective and transmission modes,...
-
Overview of Metamaterials-Integrated Antennas for Beam Manipulation Applications: The Two Decades of Progress
PublicationMetamaterials (MMs) are synthetic composite structures with superior properties not found in naturally occurring materials. MMs have gained massive attention over the last two decades because of their extraordinary properties, such as negative permittivity and permeability. These materials enable many applications in communication subsystems, especially in the field of antenna design, to enhance gain, bandwidth, and efficiency,...
-
Enhancing electrochemical properties of an ITO-coated lossy-mode resonance optical fiber sensor by electrodeposition of PEDOT:PSS
PublicationA sensor working in multiple domains may offer enhanced information about the properties of an investigated analyte, including those containing biological species. It has already been shown that a dual-domain sensing capability, i.e., in optical and electrochemical domains, can be offered by lossy-mode resonance (LMR) sensors based on indium-tin-oxide (ITO) thin film. The spectral response of the LMR sensors depends on the refractive...
-
Application of Thin ZnO ALD Layers in Fiber-Optic Fabry-Pérot Sensing Interferometers
PublicationIn this paper we investigated the response of a fiber-optic Fabry-Pérot sensing interferometer with thin ZnO layers deposited on the end faces of the optical fibers forming the cavity. Standard telecommunication single-mode optical fiber (SMF-28) segments were used with the thin ZnO layers deposited by Atomic Layer Deposition (ALD). Measurements were performed with the interferometer illuminated by two broadband sources operating...
-
Gas Composition Influence on the Properties of Boron-Doped Diamond Films Deposited on the Fused Silica
PublicationThe main subject of this study are molecular structures and optical properties of boron-doped diamond films with [B]/[C] ppm ratio between 1000 and 10 000, fabricated in two molar ratios of CH 4 -H 2 mixture (1 % and 4 %). Boron-doped diamond (BDD) film on the fused silica was presented as a conductive coating for optical and electronic purposes. The scanning electron microscopy images showed homogenous and polycrystalline surface...
-
Tuning of the finesse coefficient of optoelectronic devices
PublicationOptoelectronic devices attracted considerable attention in many branches of science and technology, which can be attributed to their unique properties. Many of them use optical cavities which parameters can be adopted to specific requirements. This thesis investigates the introduction of diamond structures (nitrogen-doped diamond film, boron-doped diamond film, undoped diamond sheet) to optical cavities to tune their finesse coefficient....
-
Ellipsometric investigation of nitrogen doped diamond thin films grown in microwave CH4/H2/N2 plasma enhanced chemical vapor deposition
PublicationThe influence of N2 concentration (1%–8%) in CH4/H2/N2 plasma on structure and optical properties of nitrogen doped diamond (NDD) films was investigated. Thickness, roughness, and optical properties of the NDD films in the VIS–NIR range were investigated on the silicon substrates using spectroscopic ellipsometry. The samples exhibited relatively high refractive index (2.6 6 0.25 at 550 nm) and extinction coefficient (0.05 6 0.02...
-
Predictions of cervical cancer identification by photonic method combined with machine learning
PublicationCervical cancer is one of the most commonly appearing cancers, which early diagnosis is of greatest importance. Unfortunately, many diagnoses are based on subjective opinions of doctors—to date, there is no general measurement method with a calibrated standard. The problem can be solved with the measurement system being a fusion of an optoelectronic sensor and machine learning algorithm to provide reliable assistance for doctors...
-
Response of a New Low-Coherence Fabry-Perot Sensor to Hematocrit Levels in Human Blood
PublicationIn this paper, a low-coherence Fabry-Perot sensor with a spectrally measured signal processing response to the refractive index of liquids is presented. Optical fiber sensors are potentially capable of continuous measuring hematocrit levels in blood. Low-coherence Fabry-Perot interferometric sensors offer a robust solution, where information about the measurand is encoded in the full spectrum of light reflected from the sensing...
-
Plasma-Based Deposition and Processing Techniques for Optical Fiber Sensing
PublicationPlasma-based techniques are widely applied for well-controlled deposition, etching or surface functionalization of a number of materials. It is difficult to imagine fabrication of novel microelectronic and optoelectronic devices without using plasma-enhanced deposition of thin films, their selective etching or functionalization of their surfaces for subsequent selective binding of chemical or biological molecules. Depending on...
-
Monte-Carlo Modeling of Optical Sensors for Postoperative Free Flap Monitoring
PublicationThis work aims to develop a numerical tissue model and implement software to simulate photon propagation using the Monte Carlo method to determine design guidelines for a physical measurement system. C++ was used for the simulation program, and Python as a programming environment to create an interface that allows the user to customize individual simulation elements, allowing for increased accuracy and flexibility when simulating...
-
Characterization of Optical and Electrical Properties of Transparent Conductive Boron-Doped Diamond thin Films Grown on Fused Silica
PublicationA conductive boron-doped diamond (BDD) grown on a fused silica/quartz has been investigated. Diamond thin films were deposited by the microwave plasma enhanced chemical vapor deposition (MW PECVD). The main parameters of the BDD synthesis, i.e. the methane admixture and the substrate temperature were investigated in detail. Preliminary studies of optical properties were performed to qualify an optimal CVD synthesis and film parameters...
-
Deposition and characterization of organic polymer thin films using a dielectric barrier discharge with different C2Hm/N2 (m = 2, 4, 6) gas mixtures
PublicationOrganic polymer thin films have been deposited on Si(100) and aluminum coated glass substrates by a dielectric barrier discharge (DBD) operated at medium pressure using different C2Hm/N2 (m = 2, 4, 6) gas mixtures. The deposited films were characterized by various spectroscopic techniques. Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS) revealed the chemical functional groups present in the films. The surface...
-
Monte-Carlo Modeling of Optical Sensors for Postoperative Free Flap Monitoring
PublicationThis work aims to develop a numerical tissue model and implement software to simulate photon propagation using the Monte Carlo method to determine design guidelines for a physical measurement system. C++ was used for the simulation program, and Python as a programming environment to create an interface that allows the user to customize individual simulation elements, allowing for increased accuracy and flexibility when simulating...
-
Effect of temperature and composition on physical properties of deep eutectic solvents based on 2-(methylamino)ethanol – measurement and prediction
PublicationNovel deep eutectic solvents were synthesized using 2-(methylamino)ethanol as hydrogen bond donor with tetrabutylammonium bromide or tetrabutylammonium chloride or tetraethylammonium chloride as hydrogen bond acceptors. Mixtures were prepared at different molar ratios of 1:6, 1:8 and 1:10 salt to alkanolamine and then Fourier Transform Infrared Spectroscopy measurements were performed to confirm hydrogen bonds interactions between...
-
Optical fiber aptasensor for label-free bacteria detection in small volumes
PublicationHighly sensitive devices for fast bacteria detection are sought to be developed with the task of quantifying the worldwide problem of pathogenic bacteria and thus helping to take control over spreading bacterial infections. This work concerns a sensing solution based on microcavity in-line Mach-Zehnder interferometer (μIMZI) induced in an optical fiber. Such a device exhibits ultrahigh sensitivity to refractive index changes...
-
Mechanical exfoliation and layer number identification of single crystal monoclinic CrCl3
PublicationAfter the recent finding that CrI3, displays ferromagnetic order down to its monolayer, extensive studies have followed to pursue new two-dimensional (2D) magnetic materials. In this article, we report on the growth of single crystal CrCl3 in the layered monoclinic phase. The system after mechanical exfoliation exhibits stability in ambient air (the degradation occurs on a time scale at least four orders of magnitude longer than...
-
Physical properties of homogeneous TiO2 films prepared by high power impulse magnetron sputtering as a function of crystallographic phase and nanostructure
PublicationOptical, photo-electrochemical, crystallographic and morphological properties of TiO2 thin films prepared by high power impulse magnetron sputtering at low substrate temperatures (<65 ◦C) without post-deposition thermal annealing are studied. The film composition-anatase, rutile or amorphous TiO2-is adjusted by the pressure (p ∼ 0.75-15 Pa) in the deposition chamber. The different crystallographic phases were determined with grazing...
-
Optical and electrical properties of ultrathin transparent nanocrystalline boron-doped diamond electrodes
PublicationThe optical properties of ultrathin (less than 100 nm) boron-doped nanocrystalline diamond (B-NCD) film were investigated in a wavelength range of 200 ÷ 20000 nm. The B-NCD refractive index showed values close to that of monocrystalline diamond (n = 2.45) in a broad wavelength range (450 ÷ 4000 nm). A transmittance up to 70% and the average film thickness of 70 nm were achieved. A special cone-shaped shim was used in the deposition...
-
Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates
PublicationThis paper presents boron-doped diamond (BDD) film as a conductive coating for optical and electronic purposes. Seeding and growth processes of thin diamond films on fused silica have been investigated. Growth processes of thin diamond films on fused silica were investigated at various boron doping level and methane admixture. Two step pre-treatment procedure of fused silica substrate was applied to achieve high seeding density....
-
Thermal dewetting as a method of surface modification of the gold thin films for surface plasmon resonance based sensor applications
PublicationHere, we report a quick and simple approach with low, optimized production costs to obtain surface plasmon resonance (SPR) based sensors fabricated through a time- and resource-effective method based on thermal dewetting of thin Au films. From the applicative point of view, the method of detection presented here should be easier to implement, since light transmission measurements seem to be much less challenging than light refractive...
-
Anisotropic optical properties of few-layer black phosphorus coatings: from fundamental insights to opto-electrochemical sensor design
PublicationFew-layer black phosphorus (FLBP) is characterised by a tuneable bandgap, high carrier mobility and anisotropic optical properties. It therefore has the potential to find applications in electronics and photonics. FLBP oxidizes upon exposure to air, limiting its utility in devices and components. To address this issue, the thesis introduces methods and tools developed for studying FLBP's optical parameters, with a particular emphasis...
-
Functional fluorine-doped tin oxide coating for opto-electrochemical label-free biosensors
PublicationSensors operating in multiple domains, such as optical and electrochemical, offer properties making biosensing more effective than those working in a single domain. To combine such domains in one sensing device, materials offering a certain set of properties are required. Fluorine-doped tin oxide (FTO) thin film is discussed in this work as functional optically for guiding lossy modes and simultaneously electrochemically, i.e....
-
Barium boron aluminum silicate glass system for solid state optical gas sensors
PublicationRecent increasing demand for new eco-friendly materials and for low cost fabrication process for use in optical sensors field, raise concern about alternative materials for this application. We have designed two glass-ceramics compositions from the quaternary ROAl2O3- SiO2-B2O3(R=Ba) alkali-earth aluminum silicate system, labeled B72 and B69, with high refractive index (>1.6), large values of Abbe number (94.0 and 53.0, respectively),...
-
Improved surface coverage of an optical fibre with nanocrystalline diamond by the application of dip-coating seeding
PublicationGrowth processes of diamond thin films on the fused silica optical fibres (10 cm in length) were investigated at various temperatures. Fused silica pre-treatment by dip-coating in a dispersion consisting of detonation nanodiamond (DND) in dimethyl sulfoxide (DMSO) with polyvinyl alcohol (PVA) was applied. Nanocrystalline diamond (NCD) films were deposited on the fibres using the microwave plasma assisted chemical vapour deposition...
-
Low temperature growth of diamond films on optical fibers using Linear Antenna CVD system
PublicationIt is not trivial to achieve a good quality diamond-coated fibre interface due to a large difference in the properties and composition of the diamond films (or use coating even) and the optical fibre material, i.e. fused silica. One of the biggest problems is the high temperature during the deposition which influences the optical fibre or optical fibre sensor structure (e.g. long-period gratings (LPG)). The greatest advantage of...
-
Adam Władziński
PeopleAdam Władziński, a PhD Candidate at Gdansk University of Technology, specializes in Biomedical Engineering with a focus on machine learning for image processing and blockchain technology. Holding a BEng and MSc in Electronics, Adam Władziński has developed a keen interest in applying advanced computational techniques to biological systems. During their master’s program, Adam Władziński explored laser spectroscopy, building a database...
-
Sensors for Rapid Detection of Environmental Toxicity in Blood of Poisoned People
PublicationRecently, the diagnosis and treatment of poisoned person can be done only in specialized centers. Furthermore, currently used clinical methods of intoxication diagnosis are not sufficient for early detection. Conventional laboratory tests based on urine and blood require professional, high skilled staff, high cost equipment as well as they are arduous and lasting analytical procedures. There is a need to elaborate relatively cheap...
-
Comprehensive evaluation of physical properties and carbon dioxide capacities of new 2-(butylamino)ethanol-based deep eutectic solvents
PublicationThe aim of this research was to assess the impact of the components of alkanolamine deep eutectic solvents (DESs) on the physical properties of those DESs and their carbon dioxide capacity. To achieve this goal, novel deep eutectic solvents were synthesized by using 2-(butylamino)ethanol (BAE) as the hydrogen bond donor (HBD), along with tetrabutylammonium bromide TBAB), tetrabutylammonium chloride (TBAC), or tetraethy- lammonium...
-
White light thermoplasmonic activated gold nanorod arrays enable the photo-thermal disinfection of medical tools from bacterial contamination
PublicationThe outspread of bacterial pathogens causing severe infections and spreading rapidly, especially among hospitalized patients, is worrying and represents a global public health issue. Current disinfection techniques are becoming insufficient to counteract the spread of these pathogens because they carry multiple antibiotic-resistance genes. For this reason, a constant need exists for new technological solutions that rely on physical...
-
Data obtained by computation for X-ray imaging of grating without magnification using oriented Gaussian beams
Open Research DataThe propagation of X-ray waves through an optical system consisting of grating and X-ray refractive lenses is considered. In this approach, the propagating wave is represented as a superposition of the oriented Gaussian beams. The direction of wave propagation in each Gaussian beam is consistent with the local propagation direction of the X-ray wavefront.
-
Data obtained by computation for X-ray imaging of grating with magnification factor equal 2 using oriented Gaussian beams
Open Research DataThe propagation of X-ray waves through an optical system consisting of grating and X-ray refractive lenses is considered. In this approach, the propagating wave is represented as a superposition of the oriented Gaussian beams. The direction of wave propagation in each Gaussian beam is consistent with the local propagation direction of the X-ray wavefront.
-
Data obtained by computation for X-ray imaging of grating with magnification factor equal 4 using oriented Gaussian beams
Open Research DataThe propagation of X-ray waves through an optical system consisting of grating and X-ray refractive lenses is considered. In this approach, the propagating wave is represented as a superposition of the oriented Gaussian beams. The direction of wave propagation in each Gaussian beam is consistent with the local propagation direction of the X-ray wavefront.
-
Data obtained by computation for X-ray imaging of grating with magnification factor equal 8 using oriented Gaussian beams
Open Research DataThe propagation of X-ray waves through an optical system consisting of grating and X-ray refractive lenses is considered. In this approach, the propagating wave is represented as a superposition of the oriented Gaussian beams. The direction of wave propagation in each Gaussian beam is consistent with the local propagation direction of the X-ray wavefront.
-
Data obtained by numerical simulation for X-ray focusing using a finite difference method
Open Research DataThe propagation of X-ray waves through an optical system consisting of many X-ray refractive lenses is considered. For solving the problem for an electromagnetic wave, a finite-difference method is applied.
-
Data obtained by computation for X-ray focusing using oriented Gaussian beams
Open Research DataThe propagation of X-ray waves through an optical system consisting of several X-ray refractive lenses is considered. Gaussian beams are exact solutions of the paraxial equation. The Helmholtz equation describes the propagation of a monochromatic electromagnetic wave. Since the widths of the beams are much larger than the wavelength of X-rays, Gaussian...