Search results for: Computational algorithm
-
Expedited constrained multi-objective aerodynamic shape optimization by means of physics-based surrogates
PublicationIn the paper, computationally efficient constrained multi-objective design optimization of transonic airfoil profiles is considered. Our methodology focuses on fixed-lift design aimed at finding the best possible trade-offs between the two objectives: minimization of the drag coefficient and maximization of the pitching moment. The algorithm presented here exploits the surrogate-based optimization principle, variable-fidelity computational...
-
TERMODYNAMIC CALCULATIONS OF TURBINE STEAM PARAMETERS
PublicationIn this work a heat balance was made for the nominal conditions of a block working with 18K370 turbine. For the parameters obtained, the thermal-flow calculations of the steam turbine were performed, maintaining the actual geometry of its flow system. Based on the nominal values obtained, iterative thermal and flow calculations were made for both the heat cycle of the power plant block and the steam turbine itself, seeking to obtain...
-
Low-fidelity model considerations for simulation-based optimisation of miniaturised wideband antennas
PublicationHere, variable-fidelity electromagnetic (EM)-based design optimisation of miniaturised antennas is discussed. The authors focus on an appropriate selection of discretisation density of the low-fidelity EM model, which results in good performance of the optimisation algorithm in terms of its computational complexity and reliability. Trust-region gradient search with low-fidelity model corrected by means of non-linear frequency scaling...
-
On low-fidelity models for variable-fidelity simulation-driven design optimization of compact wideband antennas
PublicationThe paper addresses simulation-driven design optimization of compact antennas involving variable-fidelity electromagnetic (EM) simulation models. Comprehensive investigations are carried out concerning selection of the coarse model discretization density. The effects of the low-fidelity model setup on the reliability and computational complexity of the optimization process are determined using a benchmark set of three ultra-wideband...
-
Application of regularized Savitzky–Golay filters to identification of time-varying systems
PublicationSavitzky–Golay (SG) filtering is a classical signal smoothing technique based on the local least squares approximation of the analyzed signal by a linear combination of known functions of time (originally — powers of time, which corresponds to polynomial approximation). It is shown that the regularized version of the SG algorithm can be successfully applied to identification of time-varying finite impulse response (FIR) systems....
-
Fast EM-Driven Nature-Inspired Optimization of Antenna Input Characteristics Using Response Features and Variable-Resolution Simulation Models
PublicationUtilization of optimization technique is a must in the design of contemporary antenna systems. Often, global search methods are necessary, which are associated with high computational costs when conducted at the level of full-wave electromagnetic (EM) models. In this study, we introduce an innovative method for globally optimizing reflection responses of multi-band antennas. Our approach uses surrogates constructed based on response...
-
Accelerated Gradient-Based Optimization of Antenna Structures Using Multi-Fidelity Simulations and Convergence-Based Model Management Scheme
PublicationThe importance of numerical optimization has been steadily growing in the design of contemporary antenna structures. The primary reason is the increasing complexity of antenna topologies, [ a typically large number of adjustable parameters that have to be simultaneously tuned. Design closure is no longer possible using traditional methods, including theoretical models or supervised parameter sweeping. To ensure reliability, optimization...
-
Expedite EM-driven generation of Pareto-optimal trade-off curves for variable-turn on-chip inductors
PublicationThis work presents a novel approach to computationally efficient Pareto front identification for variable-turn on-chip inductors. The final outcome is a set of solutions that correspond to the best trade-offs between conflicting design objectives. Here, we consider minimising inductor area and, simultaneously, maximising its quality factor, while maintaining a specified inductance value at a given operating frequency. As opposed...
-
Proximal primal–dual best approximation algorithm with memory
PublicationWe propose a new modified primal–dual proximal best approximation method for solving convex not necessarily differentiable optimization problems. The novelty of the method relies on introducing memory by taking into account iterates computed in previous steps in the formulas defining current iterate. To this end we consider projections onto intersections of halfspaces generated on the basis of the current as well as the previous...
-
The algorithm of building the hierarchical contextual framework of textual corpora
PublicationThis paper presents an approach for Modeling the Latent Semantic Relations. The approach is based on advantages of two computational approaches: Latent Semantic Analysis and Latent Dirichlet Allocation. The scientific question about the possibility of reducing the influence of these Methods limitation on the Quality of the Latent Semantic Relations Analysis Results is raised. The case study for building the Two-level Hierarchical Contextual...
-
3D Imaging Of Underwater Objects Using Multi-Beam Data
PublicationOne of the main applications of multibeam sonars is high resolution bathymetry measurement, as well as detecting and imaging of underwater objects like shipwrecks. In order to obtain the visualisation quality good enough to allow the researcher to investigate an object in more detail, the approach relying on construction of three-dimensional model of an imaged object, e.g. consisting of nodes, edges and plane elements (facets)...
-
Technique for reducing erosion in large-scale circulating fluidized bed units
PublicationThis paper presents a methodology, implemented for a real industrial-scale circulating fluidized bed boiler, to mitigate the risk of heating surfaces exposed to an intensive particle erosion process. For this purpose, a machine learning algorithm was developed to support the boiler reliability management process. Having a tool that can help mitigate the risk of uncontrolled power unit failure without expensive and technically complex...
-
Parallel implementation of a Sailing Assistance Application in a Cloud Environment
PublicationSailboat weather routing is a highly complex problem in terms of both the computational time and memory. The reason for this is a large search resulting in a multitude of possible routes and a variety of user preferences. Analysing all possible routes is only feasible for small sailing regions, low-resolution maps, or sailboat movements on a grid. Therefore, various heuristic approaches are often applied, which can find solutions...
-
Rapid design closure of microwave components by means of feature-based optimization and adjoint sensitivities
PublicationIn this article, fast design closure of microwave components using feature-based optimization (FBO) and adjoint sensitivities is discussed. FBO is one of the most recent optimization techniques that exploits a particular structure of the system response to “flatten” the functional landscape handled during the optimization process, which leads to reducing its computational complexity. When combined with gradient-based search involving...
-
Expedited Design Closure of Antennas By Means Of Trust-Region-Based Adaptive Response Scaling
PublicationIn the letter, a reliable procedure for expedited design optimization of antenna structures by means of trust-region adaptive response scaling (TR-ARS) is proposed. The presented approach exploits two-level electromagnetic (EM) simulation models. A predicted high-fidelity model response is obtained by applying nonlinear frequency and amplitude correction to the low-fidelity model. The surrogate created this way is iteratively rebuilt...
-
Real and Virtual Instruments in Machine Learning – Training and Comparison of Classification Results
PublicationThe continuous growth of the computing power of processors, as well as the fact that computational clusters can be created from combined machines, allows for increasing the complexity of algorithms that can be trained. The process, however, requires expanding the basis of the training sets. One of the main obstacles in music classification is the lack of high-quality, real-life recording database for every instrument with a variety...
-
A Robust Random Forest Model for Classifying the Severity of Partial Discharges in Dielectrics
PublicationPartial Discharges (PDs) are a common source of degradation in electrical assets. It is essential that the extent of the deterioration level of insulating medium is correctly identified, to optimize maintenance schedules and prevent abrupt power outages. Temporal PD signals received from damaged insulation, collected through the IEC-60270 method is the gold standard for PD detection. Temporal signals may be transformed to the frequency...
-
Rapid Variable-Resolution Parameter Tuning of Antenna Structures Using Frequency-Based Regularization and Sparse Sensitivity Updates
PublicationGeometry parameter tuning is an inherent part of antenna design process. While most often performed in a local sense, it still entails considerable computational expenses when carried out at the level of full-wave electromagnetic (EM) simulation models. Moreover, the optimization outcome may be impaired if good initial design is not available. This paper proposes a novel approach to fast and improved-reliability gradient-based...
-
RANS-based design optimization of dual-rotor wind turbines
PublicationPurpose An improvement in the energy efficiency of wind turbines can be achieved using dual rotors. Because of complex flow physics, the design of dual-rotor wind turbines (DRWTs) requires repetitive evaluations of computationally expensive partial differential equation (PDE) simulation models. Approaches for solving design optimization of DRWTs constrained by PDE simulations are investigated. The purpose of this study is to determine...
-
Information retrieval with semantic memory model
PublicationPsycholinguistic theories of semantic memory form the basis of understanding of natural language concepts. These theories are used here as an inspiration for implementing a computational model of semantic memory in the form of semantic network. Combining this network with a vector-based object-relation-feature value representation of concepts that includes also weights for confidence and support, allows for recognition of concepts...
-
Shared processor scheduling of multiprocessor jobs
PublicationWe study a problem of shared processor scheduling of multiprocessor weighted jobs. Each job can be executed on its private processor and simultaneously on possibly many processors shared by all jobs. This simultaneous execution reduces their completion times due to the processing time overlap. Each of the m shared processors may charge a different fee but otherwise the processors are identical. The goal is to maximize the total...
-
Fast Multi-Objective Aerodynamic Optimization Using Sequential Domain Patching and Multifidelity Models
PublicationExploration of design tradeoffs for aerodynamic surfaces requires solving of multi-objective optimization (MOO) problems. The major bottleneck here is the time-consuming evaluations of the computational fluid dynamics (CFD) model used to capture the nonlinear physics involved in designing aerodynamic surfaces. This, in conjunction with a large number of simulations necessary to yield a set of designs representing the best possible...
-
Expedited Optimization of Passive Microwave Devices Using Gradient Search and Principal Directions
PublicationOver the recent years, utilization of numerical optimization techniques has become ubiquitous in the design of high-frequency systems, including microwave passive components. The primary reason is that the circuits become increasingly complex to meet ever growing performance demands concerning their electrical performance, additional functionalities, as well as miniaturization. Nonetheless, as reliable evaluation of microwave device...
-
Simulating coherent light propagation in a random scattering materials using the perturbation expansion
PublicationMultiple scattering of a coherent light plays important role in the optical metrology. Probably the most important phenomenon caused by multiple scattering are the speckle patterns present in every optical imaging method based on coherent or partially coherent light illumination. In many cases the speckle patterns are considered as an undesired noise. However, they were found useful in various subsurface imaging methods such as...
-
Multiobjective Water Distribution Systems Control of Pumping Cost, Water Quality, and Storage-Reliability Constraints
PublicationThis work describes a multiobjective model for trading-off pumping cost and water quality for water distribution systems operation. Constraints are imposed on flows and pressures, on periodical tanks operation, and on tanks storage. The methodology links the multiobjective SPEA2 algorithm with EPANET, and is applied on two example applications of increasing complexity, under extended period simulation conditions and variable energy...
-
Efficient model order reduction for FEM analysis of waveguide structures and resonators
PublicationAn efficient model order reduction method for three-dimensional Finite Element Method (FEM) analysis of waveguide structures is proposed. The method is based on the Efficient Modal Order Reduction (ENOR) algorithm for creating macro-elements in cascaded subdomains. The resulting macro-elements are represented by very compact submatrices, leading to significant reduction of the overall number of unknowns. The efficiency of the model...
-
Monte Carlo simulations of the fracture resistance of an asphalt pavement layer
PublicationThe purpose of the proposed numerical model is to analyze the cracking of the wearing course in a pavement overlay, assuming a pre-existing crack that passes through the binding layer and base. The computations employed the author's simulation-based Monte Carlo material model, which describes the failure process of a Semi-Circular Bend (SCB) specimen during standard laboratory testing of asphalt concrete. A key feature of this...
-
Parallel implementation of background subtraction algorithms for real-time video processing on a supercomputer platform
PublicationResults of evaluation of the background subtraction algorithms implemented on a supercomputer platform in a parallel manner are presented in the paper. The aim of the work is to chose an algorithm, a number of threads and a task scheduling method, that together provide satisfactory accuracy and efficiency of a real-time processing of high resolution camera images, maintaining the cost of resources usage at a reasonable level. Two...
-
Flow Process Models for Pipeline Diagnosis
PublicationThis chapter examines the problem of modeling and parameterization of the transmission pipeline flow process. First, the base model for discrete time is presented, which is a reference for other developed models. Then, the diagonal approximation (AMDA) method is proposed, in which the tridiagonal sub-matrices of the recombination matrix are approximated by their diagonal counterparts, which allows for a simple determination of...
-
Numerical Issues and Approximated Models for the Diagnosis of Transmission Pipelines
PublicationThe chapter concerns numerical issues encountered when the pipeline flow process is modeled as a discrete-time state-space model. In particular, issues related to computational complexity and computability are discussed, i.e., simulation feasibility which is connected to the notions of singularity and stability of the model. These properties are critical if a diagnostic system is based on a discrete mathematical model of the flow...
-
Variable Resolution Machine Learning Optimization of Antennas Using Global Sensitivity Analysis
PublicationThe significance of rigorous optimization techniques in antenna engineering has grown significantly in recent years. For many design tasks, parameter tuning must be conducted globally, presenting a challenge due to associated computational costs. The popular bio-inspired routines often necessitate thousands of merit function calls to converge, generating prohibitive expenses whenever the design process relies on electromagnetic...
-
Expedited Metaheuristic-Based Antenna Optimization Using EM Model Resolution Management
PublicationDesign of modern antenna systems heavily relies on numerical opti-mization methods. Their primary purpose is performance improvement by tun-ing of geometry and material parameters of the antenna under study. For relia-bility, the process has to be conducted using full-wave electromagnetic (EM) simulation models, which are associated with sizable computational expendi-tures. The problem is aggravated in the case of global optimization,...
-
Globalized Parametric Optimization of Microwave Passive Components Using Simplex-Based Surrogates
PublicationOptimization-based parameter adjustment involving full-wave electromagnetic (EM) simulation models is a crucial stage of present-day microwave design process. In fact, rigorous optimization is the only reliable mean permitting to simultaneously handle multiple geometry/material parameters, objectives, and constraints. Unfortunately, EM-driven design is a computationally intensive endeavor. While local tuning is usually manageable,...
-
Knowledge-Based Expedited Parameter Tuning of Microwave Passives by Means of Design Requirement Management and Variable-Resolution EM Simulations
PublicationThe importance of numerical optimization techniques has been continually growing in the design of microwave components over the recent years. Although reasonable initial designs can be obtained using circuit theory tools, precise parameter tuning is still necessary to account for effects such as electromagnetic (EM) cross coupling or radiation losses. EM-driven design closure is most often realized using gradient-based procedures,...
-
On Fast Multi-objective Optimization of Antenna Structures Using Pareto Front Triangulation and Inverse Surrogates
PublicationDesign of contemporary antenna systems is a challenging endeavor, where conceptual developments and initial parametric studies, interleaved with topology evolution, are followed by a meticulous adjustment of the structure dimensions. The latter is necessary to boost the antenna performance as much as possible, and often requires handling several and often conflicting objectives, pertinent to both electrical and field properties...
-
Constrained multi-objective optimization of compact microwave circuits by design triangulation and pareto front interpolation
PublicationDevelopment of microwave components is an inherently multi-objective task. This is especially pertinent to the design closure stage, i.e., final adjustment of geometry and/or material parameters carried out to improve the electrical performance of the system. The design goals are often conflicting so that the improvement of one normally leads to a degradation of others. Compact microwave passives constitute a representative case:...
-
Computational Approach towards Repetitive Design Tasks: The Case Study of Parking Lot Automated Design
PublicationThe study aims to develop and assess an algorithm for efficiently generating parking spot layouts within predefined area outlines. The algorithm is an attempt to streamline the decisionmaking process by producing different design variants and optimizing the utilization of available space. The algorithm’s primary objective is to streamline decision-making by generating diverse design variants while optimizing the use of available...
-
Generating optimal paths in dynamic environments using RiverFormation Dynamics algorithm
PublicationThe paper presents a comparison of four optimisation algorithms implemented for the purpose of finding the shortest path in static and dynamic environments with obstacles. Two classical graph algorithms –the Dijkstra complete algorithm and A* heuristic algorithm – were compared with metaheuristic River Formation Dynamics swarm algorithm and its newly introduced modified version. Moreover, another swarm algorithm has been compared...
-
Low-Cost Multi-Objective Optimization Yagi-Uda Antenna in Multi-Dimensional Parameter Space
PublicationA surrogate-based technique for fast multi-objective optimization of a multi-parameter planar Yagi-Uda antenna structure is presented. The proposed method utilizes response surface approximation (RSA) models constructed using training samples obtained from evaluation of the low-fidelity antenna model. Utilization of the RSA models allowsfor fast determination of the best possible trade-offs between conflicting objectives in multi-objective...
-
Multi-Objective Water Distribution Systems Control of Pumping Cost, Water Quality, and Storage-Reliability Constraints
PublicationThis work describes a multi-objective model for trading-off pumping cost and water quality for water distribution systems operation. Constraints are imposed on flows and pressures, on periodical tanks operation, and on tanks storage. The methodology links the multi-objective SPEA2 algorithm with EPANET, and is applied on two example applications of increasing complexity, under extended period simulation conditions and variable...
-
Interoperability Constraints in Service Selection Algorithms
PublicationIn Service Oriented Architecture, composite applications are developed by integration of existing, atomic services that may be available in alternative versions realizing the same functionality but having different Quality of Service (QoS) attributes. The development process requires effective service selection algorithms that balance profits and constraints of QoS attributes. Additionally, services operate in a heterogeneous environment,...
-
Checkpointing of Parallel MPI Applications using MPI One-sided API with Support for Byte-addressable Non-volatile RAM
PublicationThe increasing size of computational clusters results in an increasing probability of failures, which in turn requires application checkpointing in order to survive those failures. Traditional checkpointing requires data to be copied from application memory into persistent storage medium, which increases application execution time as it is usually done in a separate step. In this paper we propose to use emerging byte-addressable...
-
Expedited Feature-Based Quasi-Global Optimization of Multi-Band Antenna Input Characteristics with Jacobian Variability Tracking
PublicationDesign of modern antennas relies—for reliability reasons—on full-wave electromagnetic simulation tools. In addition, increasingly stringent specifications pertaining to electrical and field performance, growing complexity of antenna topologies, along with the necessity for handling multiple objectives, make numerical optimization of antenna geometry parameters a highly recommended design procedure. Conventional algorithms, particularly...
-
Application of the Optimization Methods to the Search of Marine Propulsion Shafting Global Equilibrium in Running Condition
PublicationFull film hydrodynamic lubrication of marine propulsion shafting journal bearings in running condition is discussed. Considerable computational difficulties in non-linear determining the quasi-static equilibrium of the shafting are highlighted. The approach using two optimization methods (the particle swarm method and the interior point method) in combination with the specially developed relaxation technique is proposed to overcome...
-
Prediction of maximum tensile stress in plain-weave composite laminates with interacting holes via stacked machine learning algorithms: A comparative study
PublicationPlain weave composite is a long-lasting type of fabric composite that is stable enough when being handled. Open-hole composites have been widely used in industry, though they have weak structural performance and complex design processes. An extensive number of material/geometry parameters have been utilized for designing these composites, thereby an efficient computational tool is essential for that purpose. Different Machine Learning...
-
Efficient parallel implementation of crowd simulation using a hybrid CPU+GPU high performance computing system
PublicationIn the paper we present a modern efficient parallel OpenMP+CUDA implementation of crowd simulation for hybrid CPU+GPU systems and demonstrate its higher performance over CPU-only and GPU-only implementations for several problem sizes including 10 000, 50 000, 100 000, 500 000 and 1 000 000 agents. We show how performance varies for various tile sizes and what CPU–GPU load balancing settings shall be preferred for various domain...
-
Deformation mitigation and twisting moment control in space frames
PublicationOver the last five decades, space frames have centered on the modernization of touristic zones in view of architectural attractions. Although attempts to control joint movement and minimize axial force and bending moment in such structures were made sufficiently, twisting moments in space frames have been underestimated so far. In space frames, external load or restoring the misshapen shape may cause twisting in members. We herein...
-
Active Kriging-based conjugate first-order reliability method for highly efficient structural reliability analysis using resample strategy
PublicationEfficient structural reliability analysis method is crucial to solving reliability analysis of complex structural problems. High-computational cost and low-failure probability problems greatly limit the efficiency in structural reliability analysis problems, causing the safety and reliability of the structure to be questioned. In this work, a highly efficient structural reliability analysis method coupling active Kriging algorithm...
-
Modeling the effect of electric vehicles on noise levels in the vicinity of rural road sections
PublicationNumerous European countries experience a steady increase in the share of electric (EV) and hybrid electric (HEV) vehicles in the traffic stream. These vehicles, often referred to as low- or zero-emission vehicles, significantly reduce air pollution in the road environment. They also have a positive effect on noise levels in city centers and in the surroundings of low-speed roads. Nevertheless, issues related to modeling noise from...
-
Expedited Gradient-Based Design Closure of Antennas Using Variable-Resolution Simulations and Sparse Sensitivity Updates
PublicationNumerical optimization has been playing an increasingly important role in the design of contemporary antenna systems. Due to the shortage of design-ready theoretical models, optimization is mainly based on electromagnetic (EM) analysis, which tends to be costly. Numerous techniques have evolved to abate this cost, including surrogate-assisted frameworks for global optimization, or sparse sensitivity updates for speeding up local...