Filters
total: 2262
displaying 1000 best results Help
Search results for: e. coli, machine learning, optical method, spectroscopy, urine, urospesis
-
The Optical Coherence Tomography and Raman Spectroscopy for Sensing of the Bone Demineralization Process
PublicationThe presented research was intended to seek new optical methods to investigate the demineralization process of bones. Optical examination of the bone condition could facilitate clinical trials and improve the safety of patients. The authors used a set of complementary methods: polarization-sensitive optical coherence tomography (PS-OCT) and Raman spectroscopy. Chicken bone samples were used in this research. To stimulate in laboratory...
-
Preeclampsia Risk Prediction Using Machine Learning Methods Trained on Synthetic Data
PublicationThis paper describes a research study that investigates the use of machine learning algorithms on synthetic data to classify the risk of developing preeclampsia by pregnant women. Synthetic datasets were generated based on parameter distributions from three real patient studies. Four models were compared: XGBoost, Support Vector Machine (SVM), Random Forest, and Explainable Boosting Machines (EBM). The study found that the XGBoost...
-
e-Learning in Tourism Education
Publication -
Fast Machine-Learning-Enabled Size Reduction of Microwave Components Using Response Features
PublicationAchieving compact size has emerged as a key consideration in modern microwave design. While structural miniaturization can be accomplished through judicious circuit architecture selection, precise parameter tuning is equally vital to minimize physical dimensions while meeting stringent performance requirements for electrical characteristics. Due to the intricate nature of compact structures, global optimization is recommended,...
-
Real and Virtual Instruments in Machine Learning – Training and Comparison of Classification Results
PublicationThe continuous growth of the computing power of processors, as well as the fact that computational clusters can be created from combined machines, allows for increasing the complexity of algorithms that can be trained. The process, however, requires expanding the basis of the training sets. One of the main obstacles in music classification is the lack of high-quality, real-life recording database for every instrument with a variety...
-
Active learning on stacked machine learning techniques for predicting compressive strength of alkali-activated ultra-high-performance concrete
PublicationConventional ultra-high performance concrete (UHPC) has excellent development potential. However, a significant quantity of CO2 is produced throughout the cement-making process, which is in contrary to the current worldwide trend of lowering emissions and conserving energy, thus restricting the further advancement of UHPC. Considering climate change and sustainability concerns, cementless, eco-friendly, alkali-activated UHPC (AA-UHPC)...
-
Can Evaluation Patterns Enable End Users to Evaluate the Quality of an e-learning System? An Exploratory Study.
PublicationThis paper presents the results of an exploratory study whose main aim is to verify if the Pattern-Based (PB) inspection technique enables end users to perform reliable evaluation of e-learning systems in real work-related settings. The study involved 13 Polish and Italian participants, who did not have an HCI background, but used e-learning platforms for didactic and/or administrative purposes. The study revealed that the participants...
-
Improving platelet‐RNA‐based diagnostics: a comparative analysis of machine learning models for cancer detection and multiclass classification
PublicationLiquid biopsy demonstrates excellent potential in patient management by providing a minimally invasive and cost-effective approach to detecting and monitoring cancer, even at its early stages. Due to the complexity of liquid biopsy data, machine-learning techniques are increasingly gaining attention in sample analysis, especially for multidimensional data such as RNA expression profiles. Yet, there is no agreement in the community...
-
Platelet RNA Sequencing Data Through the Lens of Machine Learning
PublicationLiquid biopsies offer minimally invasive diagnosis and monitoring of cancer disease. This biosource is often analyzed using sequencing, which generates highly complex data that can be used using machine learning tools. Nevertheless, validating the clinical applications of such methods is challenging. It requires: (a) using data from many patients; (b) verifying potential bias concerning sample collection; and (c) adding interpretability...
-
Perspektywy wykorzystania technologii internetowych typu E-learning w dydaktyce szkół wyższych.
PublicationArtykuł dotyczy nauczania przez Internet na poziomie uniwersyteckim. Zaprezentowany został model wirtualnego uniwersytetu, który obejmuje materiały dydaktyczne, komunikację, egzaminy i organizację. Artykuł koncentruje się na technicznych zagadnieniach. Przeanalizowano także wpływ wykorzystania technologii E-learning na różne aspekty życia wyższej uczelni.
-
Machine Learning and Text Analysis in an Artificial Intelligent System for the Training of Air Traffic Controllers
PublicationThis chapter presents the application of new information technology in education for the training of air traffic controllers (ATCs). Machine learning, multi-criteria decision analysis, and text analysis as the methods of artificial intelligence for ATCs training have been described. The authors have made an analysis of the International Civil Aviation Organization documents for modern principles of ATCs education. The prototype...
-
A freeze-thaw method for desintegration of Escherichia coli cells producing T7 lysozyme used in pBAD expression systems
PublicationPlazmid pLysN zawierający gen kodujący lizozym T7 pod kontrolą promotora lac został skonstruowany w celu ułatwienia dezintegracji komórek po ekspresji rekombinantowych białek w systemach ekspresji indukowanych arabinozą. Użyteczność plazmidu została przetestowana w komórkach Escherichia coli TOP10 i E. coli LMG194, niosących plazmid pBADMHADgeSSB, zawierający gen kodujący białko SSB Deinococcus geothermalis pod kontrolą promotora...
-
Synthesis and transport studies of model dipeptides with modified n-terminal amino groups into e. coli k12 mutant strains
Publicationotrzymano na drodze syntezy chemicznej kilka modelowych dipeptydów zawierających n-terminalna guanidynę oraz betainę. zbadano transport tych peptydów do komorek e. coli k12, posiadających zróżnicowane systemy transportowe. wyniki badań potwierdziły brak transportu do komórek bakteryjnych z wykorzystaniem permeaz peptydowych. dodatnio naładowana i silnie polarna grupa aminowa uniemożliwia efektywny transport tych związków do komórek...
-
Forewarned Is Forearmed: Machine Learning Algorithms for the Prediction of Catheter-Induced Coronary and Aortic Injuries
PublicationCatheter-induced dissections (CID) of coronary arteries and/or the aorta are among the most dangerous complications of percutaneous coronary procedures, yet the data on their risk factors are anecdotal. Logistic regression and five more advanced machine learning techniques were applied to determine the most significant predictors of dissection. Model performance comparison and feature importance ranking were evaluated. We identified...
-
Detection of People Swimming in Water Reservoirs with the Use of Multimodal Imaging and Machine Learning
PublicationEvery year in many countries, there are fatal unintentional drownings in different water reservoirs like swimming pools, lakes, seas, or oceans. The existing threats of this type require creating a method that could automatically supervise such places to increase the safety of bathers. This work aimed to create methods and prototype solutions for detecting people bathing in water reservoirs using a multimodal imaging system and...
-
Expert system against machine learning approaches as a virtual sensor for ventricular arrhythmia risk level estimation
PublicationRecent advancements in machine learning have opened new avenues for preventing fatal ventricular arrhythmia by accurately measuring and analyzing QT intervals. This paper presents virtual sensor based on an expert system designed to prevent the risk of fatal ventricular arrhythmias associated with QT-prolonging treatments. The expert system categorizes patients into three risk levels based on their electrocardiogram-derived QT...
-
Assessment Of the Relevance of Best Practices in The Development of Medical R&D Projects Based on Machine Learning
PublicationMachine learning has emerged as a fundamental tool for numerous endeavors within health informatics, bioinformatics, and medicine. However, novices among biomedical researchers and IT developers frequently lack the requisite experience to effectively execute a machine learning project, thereby increasing the likelihood of adopting erroneous practices that may result in common pitfalls or overly optimistic predictions. The paper...
-
Computational Complexity and Its Influence on Predictive Capabilities of Machine Learning Models for Concrete Mix Design
PublicationThe design of concrete mixtures is crucial in concrete technology, aiming to produce concrete that meets specific quality and performance criteria. Modern standards require not only strength but also eco-friendliness and production efficiency. Based on the Three Equation Method, conventional mix design methods involve analytical and laboratory procedures but are insufficient for contemporary concrete technology, leading to overengineering...
-
A machine learning approach to classifying New York Heart Association (NYHA) heart failure
PublicationAccording to the European Society of Cardiology, globally the number of patients with heart failure nearly doubled from 33.5 million in 1990 to 64.3 million in 2017, and is further projected to increase dramatically in this decade, still remaining a leading cause of morbidity and mortality. One of the most frequently applied heart failure classification systems that physicians use is the New York Heart Association (NYHA) Functional...
-
Modeling lignin extraction with ionic liquids using machine learning approach
PublicationLignin, next to cellulose, is the second most common natural biopolymer on Earth, containing a third of the organic carbon in the biosphere. For many years, lignin was perceived as waste when obtaining cellulose and hemicellulose and used as a biofuel for the production of bioenergy. However, recently, lignin has been considered a renewable raw material for the production of chemicals and materials to replace petrochemical resources....
-
Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android Malware Detection
PublicationDue to the exponential rise of mobile technology, a slew of new mobile security concerns has surfaced recently. To address the hazards connected with malware, many approaches have been developed. Signature-based detection is the most widely used approach for detecting Android malware. This approach has the disadvantage of being unable to identify unknown malware. As a result of this issue, machine learning (ML) for detecting malware...
-
Explainable machine learning for diffraction patterns
PublicationSerial crystallography experiments at X-ray free-electron laser facilities produce massive amounts of data but only a fraction of these data are useful for downstream analysis. Thus, it is essential to differentiate between acceptable and unacceptable data, generally known as ‘hit’ and ‘miss’, respectively. Image classification methods from artificial intelligence, or more specifically convolutional neural networks (CNNs), classify...
-
E-learning in tourism and hospitality: A map
PublicationThe impact of information and communication technologies (ICT) on tourism and hospitality industries has been widely recognized and investigated as a one of the major changes within the domains in the last decade: new ways of communicating with prospective tourists and new ways of purchasing products arisen are now part of the industries’ everyday life. Poor attention has been paid so far to the role played by new media in education...
-
Analysis of heat transfer and AuNPs-mediated photo-thermal inactivation of E. coli at varying laser powers using single-phase CFD modeling
PublicationPurpose In the wake of the COVID-19 pandemics, the demand for innovative and effective methods of bacterial inactivation has become a critical area of research, providing the impetus for this study. The purpose of this research is to analyze the AuNPs-mediated photothermal inactivation of E. coli. Gold nanoparticles irradiated by laser represent a promising technique for combating bacterial infection that combines high-tech and...
-
Evaluation of the fast impedance spectroscopy method in the laboratory measurement system
PublicationIn this paper the method for fast impedancespectroscopy of technical objects with very high impedance(|Zx| ≥ 1 GΩ) is evaluated by means of simulation and practicalexperiment. The method is based on excitation of an object, witha square pulse and measurements of voltage and currentresponses with DAQ card. The object impedance spectrum isobtained with use of continuous Fourier transform. Someimprovements of the method concerned...
-
Systemy z Uczeniem Maszynowym / Systems with Machine Learning
e-Learning Courses -
Machine Learning-Based Wetland Vulnerability Assessment in the Sindh Province Ramsar Site Using Remote Sensing Data
PublicationWetlands provide vital ecological and socioeconomic services but face escalating pressures worldwide. This study undertakes an integrated spatiotemporal assessment of the multifaceted vulnerabilities shaping Khinjhir Lake, an ecologically significant wetland ecosystem in Pakistan, using advanced geospatial and machine learning techniques. Multi-temporal optical remote sensing data from 2000 to 2020 was analyzed through spectral...
-
Machine-Learning-Based Global Optimization of Microwave Passives with Variable-Fidelity EM Models and Response Features
PublicationMaximizing microwave passive component performance demands precise parameter tuning, particularly as modern circuits grow increasingly intricate. Yet, achieving this often requires a comprehensive approach due to their complex geometries and miniaturized structures. However, the computational burden of optimizing these components via full-wave electromagnetic (EM) simulations is substantial. EM analysis remains crucial for circuit...
-
Fast High-Impedance Spectroscopy Method Using SINC Signal Excitation
PublicationIn this paper the method of fast impedance spectroscopy of technical objects with high impedance (|Zx| > 1 Gohm) is evaluated by means of simulation and practical experiment. The method is based on excitation of an object with a sinc signal and sampling response signals proportional to current flowing through and voltage across the measured impedance. The object impedance spectrum is obtained with use of continuous Fourier transform...
-
A Data-Driven Comparative Analysis of Machine-Learning Models for Familial Hypercholesterolemia Detection
PublicationThis study presents an assessment of familial hypercholesterolemia (FH) probability using different algorithms (CatBoost, XGBoost, Random Forest, SVM) and its ensembles, leveraging electronic health record data. The primary objective is to explore an enhanced method for estimating FH probability, surpassing the currently recommended Dutch Lipid Clinic Network (DLCN) Score. The models were trained using the largest Polish cohort...
-
Road traffic can be predicted by machine learning equally effectively as by complex microscopic model
PublicationSince high-quality real data acquired from selected road sections are not always available, a traffic control solution can use data from software traffic simulators working offline. The results show that in contrast to microscopic traffic simulation, the algorithms employing neural networks can work in real-time, so they can be used, among others, to determine the speed displayed on variable message road signs. This paper describes...
-
Active Annotation in Evaluating the Credibility of Web-Based Medical Information: Guidelines for Creating Training Data Sets for Machine Learning
PublicationMethods Results Discussion References Abbreviations Copyright Abstract Background: The spread of false medical information on the web is rapidly accelerating. Establishing the credibility of web-based medical information has become a pressing necessity. Machine learning offers a solution that, when properly deployed, can be an effective tool in fighting medical misinformation on the web. Objective: The aim of this study is to...
-
Unsupervised machine-learning classification of electrophysiologically active electrodes during human cognitive task performance
PublicationIdentification of active electrodes that record task-relevant neurophysiological activity is needed for clinical and industrial applications as well as for investigating brain functions. We developed an unsupervised, fully automated approach to classify active electrodes showing event-related intracranial EEG (iEEG) responses from 115 patients performing a free recall verbal memory task. Our approach employed new interpretable...
-
Integrating Optical Spectroscopy and Chemometric Methods
Publication -
Machine learning approach to packaging compatibility testing in the new product development process
PublicationThe paper compares the effectiveness of selected machine learning methods as modelling tools supporting the selection of a packaging type in new product development process. The main goal of the developed model is to reduce the risk of failure in compatibility tests which are preformed to ensure safety, durability, and efficacy of the finished product for the entire period of its shelf life and consumer use. This kind of testing...
-
Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures
PublicationMany studies have been performed to put quantifying uncertainties into the seismic risk assessment of reinforced concrete (RC) buildings. This paper provides a risk-assessment support tool for purpose of retrofitting and potential design strategies of RC buildings. Machine Learning (ML) algorithms were developed in Python software by innovative methods of hyperparameter optimization, such as halving search, grid search, random...
-
A Universal Gains Selection Method for Speed Observers of Induction Machine
PublicationProperties of state observers depend on proper gains selection. Each method of state estimation may require the implementation of specific techniques of finding those gains. The aim of this study is to propose a universal method of automatic gains selection and perform its verification on an induction machine speed observer. The method utilizes a genetic algorithm with fitness function which is directly based on the impulse response...
-
Solubility of dapsone in deep eutectic solvents: Experimental analysis, molecular insights and machine learning predictions
PublicationBackground. Dapsone (DAP) is an anti-inflammatory and antimicrobial active pharmaceutical ingredient used to treat, e.g., AIDS-related diseases. However, low solubility is a feature hampering its efficient use. Objectives. First, deep eutectic solvents...
-
Tomasz Wąsowicz dr hab.
PeopleTomasz Wąsowicz's research was first related to high-resolution atomic spectroscopy and focused on measurements and analysis of the transition probabilities of the forbidden lines, the hyperfine and isotopic structure of spectral lines of heavy elements, Stark effect in the helium atom. Tomasz Wąsowicz currently studies physicochemical processes occurring during interactions of various forms of radiation with atoms and molecules...
-
Karol Flisikowski dr inż.
PeopleKarol Flisikowski works as Associate Professor at the Department of Statistics and Econometrics, Faculty of Management and Economics, Gdansk University of Technology. He is responsible for teaching descriptive and mathematical statistics (in Polish and English), as well as scientific research in the field of social statistics. He has been a participant in many national and international conferences, where he has presented the results...
-
E-learning workshops with Norbert Berger
e-Learning CoursesThe series of workshops supports MBA faculty in planning, designing, delivering and assessing blended and online modules for their cohorts. It is supplemented by individual coaching to create Moodle and conferencing solutions and their delivery.
-
An Adversarial Machine Learning Approach on Securing Large Language Model with Vigil, an Open-Source Initiative
PublicationSeveral security concerns and efforts to breach system security and prompt safety concerns have been brought to light as a result of the expanding use of LLMs. These vulnerabilities are evident and LLM models have been showing many signs of hallucination, repetitive content generation, and biases, which makes them vulnerable to malicious prompts that raise substantial concerns in regard to the dependability and efficiency of such...
-
Is it too late now to say we’re sorry? Examining anxiety contagion and crisis communication strategies using machine learning
PublicationIn this paper, we explore the role of perceived emotions and crisis communication strategies via organizational computer-mediated communication in predicting public anxiety, the default crisis emotion. We use a machine-learning approach to detect and predict anxiety scores in organizational crisis announcements on social media and the public’s responses to these posts. We also control for emotional and language tones in organizational...
-
Variable Resolution Machine Learning Optimization of Antennas Using Global Sensitivity Analysis
PublicationThe significance of rigorous optimization techniques in antenna engineering has grown significantly in recent years. For many design tasks, parameter tuning must be conducted globally, presenting a challenge due to associated computational costs. The popular bio-inspired routines often necessitate thousands of merit function calls to converge, generating prohibitive expenses whenever the design process relies on electromagnetic...
-
Machine Learning-Science and Technology
Journals -
Foundations and Trends in Machine Learning
Journals -
Rapid Surrogate-Aided Multi-Criterial Optimization of Compact Microwave Passives Employing Machine Learning and ANNs
PublicationThis article introduces an innovative method for achieving low-cost and reliable multi-objective optimization (MO) of microwave passive circuits. The technique capitalizes on the attributes of surrogate models, specifically artificial neural networks (ANNs), and multi-resolution electromagnetic (EM) analysis. We integrate the search process into a machine learning (ML) framework, where each iteration produces multiple infill points...
-
Application of a hybrid mechanistic/machine learning model for prediction of nitrous oxide (N2O) production in a nitrifying sequencing batch reactor
PublicationNitrous oxide (N2O) is a key parameter for evaluating the greenhouse gas emissions from wastewater treatment plants. In this study, a new method for predicting liquid N2O production during nitrification was developed based on a mechanistic model and machine learning (ML) algorithm. The mechanistic model was first used for simulation of two 15-day experimental trials in a nitrifying sequencing batch reactor. Then, model predictions...
-
Quality negotiation mechanism for e-learning platforms
PublicationZarządzanie jakością w aplikacjach działających w środowiskach sieci WEB opiera się na zadaniach związanych z wykrywaniem jakości połączenia klient - serwer oraz na optymalnym przydziale zasobów wedle jakości takowego połączenia. Optymalne zarządzanie jakością zależy od wypracowanego kompromisu pomiędzy jakością łącza a jakości transportowanego łączem zasobu. Artykuł opisuje możliwy do implementacji mechanizm odpowiedzialny za...
-
Publicly available lecture webcasts - e-learning or promotion tool? case study
PublicationThis paper aims to show how universities interact with Internet users by webcasting selected courses. Paper has exploratory case-study character, presenting example of Berkeley Webcast initiative of University of California, Berkeley, webcasting undergraduate courses and on-campus events. On the base of short introduction to webcasting usage as an e-learning and promotional tool, the analysis of 3 purposely chosen different courses...