Search results for: approximation methods, fractional calculus, modeling, neural networks, recurrent neural networks
-
Electromagnetic Modeling of Microstrip Elements Aided with Artificial Neural Network
PublicationThe electromagnetic modeling principle aided withartificial neural network to designing the microwave widebandelements/networks prepared in microstrip technology is proposedin the paper. It is assumed that the complete information is knownfor the prototype design which is prepared on certain substratewith certain thickness and electric permittivity. The longitudinaland transversal dimensions of new design...
-
An automatic selection of optimal recurrent neural network architecture for processes dynamics modelling purposes
PublicationA problem related to the development of algorithms designed to find the structure of artificial neural network used for behavioural (black-box) modelling of selected dynamic processes has been addressed in this paper. The research has included four original proposals of algorithms dedicated to neural network architecture search. Algorithms have been based on well-known optimisation techniques such as evolutionary algorithms and...
-
Survey on fuzzy logic methods in control systems of electromechanical plants
PublicationРассмотрены алгоритмы управления электромеханическими системами с использованием теории нечеткой логики, приводятся основные положения их синтеза, рассматриваются методы анализа их устойчивости на основе нечетких функций Ляпунова. Эти алгоритмы чаще всего реализуются в виде различных регуляторов, применение которых целесообразно в системах, математическая модель которых не известна, не детерминирована или является строго нелинейной,...
-
Modeling the Networks - ed. 2021/2022
e-Learning CoursesThe goal of this course is to present optimization problems for road networks, where the road network is a set of n distinct lines, or n distinct (open or closed) line segments, in the plane, such that their union is a connected region.
-
Monitoring Regenerative Heat Exchanger in Steam Power Plant by Making Use of the Recurrent Neural Network
PublicationArtificial Intelligence algorithms are being increasingly used in industrial applications. Their important function is to support operation of diagnostic systems. This paper pesents a new approach to the monitoring of a regenerative heat exchanger in a steam power plant, which is based on a specific use of the Recurrent Neural Network (RNN). The proposed approach was tested using real data. This approach can be easily adapted to...
-
Traffic Modeling in IMS-based NGN Networks
PublicationIn the modern world the need for accurate and quickly delivered information is becoming more and more essential. In order to fulfill these requirements, next generation telecommunication networks should be fast introduced and correctly dimensioned. For this reason proper traffic models must be identified, which is the subject of this paper. In the paper standardization of IMS (IP Multimedia Subsystem) concept and IMS-based NGN...
-
Karol Flisikowski dr inż.
PeopleKarol Flisikowski works as Associate Professor at the Department of Statistics and Econometrics, Faculty of Management and Economics, Gdansk University of Technology. He is responsible for teaching descriptive and mathematical statistics (in Polish and English), as well as scientific research in the field of social statistics. He has been a participant in many national and international conferences, where he has presented the results...
-
IEEE Transactions on Neural Networks and Learning Systems
Journals -
Optical Memory and Neural Networks (Information Optics)
Journals -
Approximation task decomposition for artificial neural network.
PublicationW pracy przedstawiono wpływ dekompozycji zadania na czasochłonność projektowania oraz dokładność i szybkość obliczeń sztucznej sieci neuronowej wykorzystanej do rozwiązania rzeczywistego problemu technicznego, którego matematyczny model był znany. Celem obliczeń prowadzonych przez sieć neuronową było określenie wartości współczynnika przepływu m na podstawie znajomości wartości: przewodności dźwiękowej C i średnicy przewodu d (a...
-
Modeling Heat Transfer in Heterogeneous Media Using Fractional Calculus
Publication -
Jerzy Konorski dr hab. inż.
PeopleJerzy Konorski received his M. Sc. degree in telecommunications from Gdansk University of Technology, Poland, and his Ph. D. degree in computer science from the Polish Academy of Sciences, Warsaw, Poland. In 2007, he defended his D. Sc. thesis at the Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology. He has authored over 150 papers, led scientific projects funded by the European Union,...
-
Wireless Link Selection Methods for Maritime Communication Access Networks—A Deep Learning Approach
PublicationIn recent years, we have been witnessing a growing interest in the subject of communication at sea. One of the promising solutions to enable widespread access to data transmission capabilities in coastal waters is the possibility of employing an on-shore wireless access infrastructure. However, such an infrastructure is a heterogeneous one, managed by many independent operators and utilizing a number of different communication...
-
Optimizing Construction Engineering Management Using Metaheuristic Methods and Bayesian Networks
PublicationThe construction of buildings invariably involves time and costs, and disruptions impact ongoing construction projects. Crisis situations in management strategies, structural confusion, and finan-cial miscalculations often arise due to misguided decision-making. This article proposes a method that combines the learning of Bayesian Networks and heuristic techniques to optimize deci-sion-making processes in construction scheduling....
-
Performance of LSP preemption methods in different MPLS networks
PublicationPreemption in Multiprotocol Label Switching (MPLS) is an optional traffic engineering technique used to create a new path of high priority when there is not enough bandwidth available. In such case the path is admitted by removing one or more previously allocated paths of lower priority. As there are usually many possible sets of low priority paths which can be selected, a preemption algorithm is being started to select the best...
-
Iterative Global Sensitivity Analysis Algorithm with Neural Network Surrogate Modeling
PublicationGlobal sensitivity analysis (GSA) is a method to quantify the effect of the input parameters on outputs of physics-based systems. Performing GSA can be challenging due to the combined effect of the high computational cost of each individual physics-based model, a large number of input parameters, and the need to perform repetitive model evaluations. To reduce this cost, neural networks (NNs) are used to replace the expensive physics-based...
-
Design and modeling of reliable networks
Publication-
-
Reliable Networks Design and Modeling
PublicationSłowo wstępne numeru specjalnego czasopisma Telecommunication Systems Journal
-
Methods for physical impairment constrained routing with selected protection in all-optical networks
PublicationIn this paper, we investigate the problem of survivable all-optical routing in WDM networks with physical impairments. One of the recent key issues in survivable optical network design refers to maximization of the ratio of routeable demands while keeping the overall network cost low. In WDM networks, this goal can be achieved by routing as many demands in all-optical way as possible. Based on the latest technical trends driven...
-
Comparison of single best artificial neural network and neural network ensemble in modeling of palladium microextraction
Publication -
Orken Mamyrbayev Professor
People1. Education: Higher. In 2001, graduated from the Abay Almaty State University (now Abay Kazakh National Pedagogical University), in the specialty: Computer science and computerization manager. 2. Academic degree: Ph.D. in the specialty "6D070300-Information systems". The dissertation was defended in 2014 on the topic: "Kazakh soileulerin tanudyn kupmodaldy zhuyesin kuru". Under my supervision, 16 masters, 1 dissertation...
-
Mathematical modeling and prediction of pit to crack transition under cyclic thermal load using artificial neural network
PublicationThe formation of pitting is a major problem in most metals, which is caused by extremely localized corrosion that creates small holes in metal and subsequently, it changes into cracks under mechanical load, thermo-mechanical stress, and corrosion process factors. This research aims to study pit to crack transition phenomenon of steel boiler heat tubes under cyclic thermal load, and mathematical modeling...
-
The methods of design reliable distributed networks
PublicationOpisano dwie metody projektowania niezawodnych sieci rozległych. W pierwszej metodzie przyjęto, że koszt konstrukcji każdego połączenia jest jednakowy, w drugiej koszty opisuje zadana macierz kosztów. Jako parametr niezawodnościowy przyjęto liczbę niezależnych dróg pomiędzy węzłami sieci. Pierwsza z metod jest metodą dokładną, druga heurystyczną. Zdefiniowano i oceniono błąd metody heurystycznej. Opublikowano wyniki otrzymane...
-
Performance analysis of an rfid-based 3d indoor positioning system combining scene analysis and neural network methods
PublicationThe main purpose of this research is to improve localization accuracy of an active Radio Frequency Identification, RFID tag, in 3D indoor space. The paper presents a new RFID based 3D Indoor Positioning System which shows performance improvement. The proposed positioning system combines two methods: the Scene Analysis technique and Artificial Neural Network. The results of both simulation using Log-Distance Path Loss Model and...
-
Comparative study of methods for artificial neural network training.
PublicationPrzedstawiono wyniki badań porównawczych następujących metod uczenia sieci neuronowych: propagacji wstecznej błędów, rekursywnej metody najmniejszych kwadratów, metody Zangwill'a i algorytmów ewolucyjnych. Badania dotyczyły projektowania adaptacyjnego regulatora neuronowego napięcia generatora synchronicznego.
-
<title>Recurrent neural network application to image filtering: 2-D Kalman filtering approach</title>
Publication -
Dynamic Bayesian Networks for Symbolic Polyphonic Pitch Modeling
PublicationSymbolic pitch modeling is a way of incorporating knowledge about relations between pitches into the process of an- alyzing musical information or signals. In this paper, we propose a family of probabilistic symbolic polyphonic pitch models, which account for both the “horizontal” and the “vertical” pitch struc- ture. These models are formulated as linear or log-linear interpo- lations of up to fi ve sub-models, each of which is...
-
Bożena Kostek prof. dr hab. inż.
People -
Accidental wow evaluation based on sinusoidal modeling and neural nets prediction
PublicationReferat przedstawia opis algorytmu do określenia charakterystyki zniekształcenia kołysania dźwięku. Prezentowane podejście wykorzystuje sinusoidalną analizę dźwięku bazującą zarówno na amplitudowym jak i fazowym widmie sygnału fonicznego. Trajektorie poszczególnych składowych tonalnych, obrazujące zniekształcenie kołysania, określane są na podstawie analizy ich chwilowych amplitud, częstotliwości i faz. Dodatkowo referat przedstawia...
-
Numerical modeling of force and contact networks in fragmented sea ice
Publication -
Modeling of Wireless Traffic Load in Next Generation Wireless Networks
Publication -
Efficient methods for radio location service in cellular communication networks
PublicationW artykule przedstawiono dwie oryginalne metody lokalizowania terminala ruchomego w sieciach komórkowych trzeciej generacji. Metody te podczas estymacji położenia terminala nie wymagają znajomości różnicy czasów w synchronizacji poszczególnych stacji bazowych, przez co są tanie w implementacji. Przedstawiono wyniki badań symulacyjnych zaproponowanych metod.
-
3rd International Workshop on Reliable Networks Design and Modeling (RNDM 2011)
Publicationartykuł sprawozdawczy z konferencji
-
Fourth International Workshop on Reliable Networks Design and Modeling (RNDM 2012)
Publicationartykuł sprawozdawczy z konferencji
-
Methods and means of processing discrete information in networks with a high level of noise
Publication -
Study of data scheduling methods in the WiMAX Mobile metropolitan area networks
PublicationThe paper discusses basic assumptions of the WiMAX Mobile system. It also presents and analyses the results of simulation tests run for selected data scheduling methods and subcarrier allocation. Based on the test results, the authors have prepared a comparative analysis of two popular data scheduling methods, i.e. WRR and PF, and their own method CDFQ which uses information about the current channel situation for the queuing processes...
-
Modeling and Simulation for Exploring Power/Time Trade-off of Parallel Deep Neural Network Training
PublicationIn the paper we tackle bi-objective execution time and power consumption optimization problem concerning execution of parallel applications. We propose using a discrete-event simulation environment for exploring this power/time trade-off in the form of a Pareto front. The solution is verified by a case study based on a real deep neural network training application for automatic speech recognition. A simulation lasting over 2 hours...
-
Sławomir Jerzy Ambroziak dr hab. inż.
PeopleSławomir J. Ambroziak was born in Poland, in 1982. He received the M.Sc., Ph.D. and D.Sc. degrees in radio communication from Gdańsk University of Technology (Gdańsk Tech), Poland, in 2008, 2013, and 2020 respectively. Since 2008 he is with the Department of Radiocommunication Systems and Networks of the Gdańsk Tech: 2008-2013 as Research Assistant, 2013-2020 as Assistant Professor, and since 2020 as Associate Professor. He is...
-
Wind-wave variability in a shallow tidal sea—Spectral modelling combined with neural network methods
Publication -
Highlights from RNDM 2018 – 10th Anniversary Workshop on Resilient Networks Design and Modeling
PublicationArtykuł prezentujący relację z workshopu RNDM 2018
-
Modelling of a medium-term dynamics in a shallow tidal sea, based on combined physical and neural network methods
Publication -
Jacek Rak dr hab. inż.
PeopleJacek Rak uzyskał stopień doktora habilitowanego nauk technicznych w dyscyplinie telekomunikacji (specjalność: teleinformatyka) w 2016 r., a stopień doktora nauk technicznych w dyscyplinie informatyka w 2009 r. Obecnie jest pracownikiem naukowo-dydaktycznym Katedry Teleinformatyki Wydziału Elektroniki, Telekomunikacji i Informatyki Politechniki Gdańskiej. Jego działalność naukowa koncentruje się w obszarze doboru tras, projektowania...
-
Wiktoria Wojnicz dr hab. inż.
PeopleDSc in Mechanics (in the field of Biomechanics) - Lodz Univeristy of Technology, 2019 PhD in Mechanics (in the field of Biomechanics) - Lodz Univeristy of Technology, 2009 (with distinction) List of papers (2009 - ) Wojnicz W., Wittbrodt E., Analysis of muscles' behaviour. Part I. The computational model of muscle. Acta of Bioengineering and Biomechanics, Vol. 11, No.4, 2009, p. 15-21 Wojnicz W., Wittbrodt E., Analysis of...
-
Two- and three-dimensional elastic networks with rigid junctions: modeling within the theory of micropolar shells and solids
PublicationFor two- and three-dimensional elastic structures made of families of flexible elastic fibers undergoing finite deformations, we propose homogenized models within the micropolar elasticity. Here we restrict ourselves to networks with rigid connections between fibers. In other words, we assume that the fibers keep their orthogonality during deformation. Starting from a fiber as the basic structured element modeled by the Cosserat...
-
Australian Conference on Neural Networks
Conferences -
International Symposium on Neural Networks
Conferences -
World Congress on Neural Networks
Conferences -
Using Deep Neural Network Methods for Forecasting Energy Productivity Based on Comparison of Simulation and DNN Results for Central Poland—Swietokrzyskie Voivodeship
Publication -
Using Deep Neural Network Methods for Forecasting Energy Productivity Based on Comparison of Simulation and DNN Results for Central Poland – Swietokrzyskie Voivodeship
Publication -
Particle swarm optimization–artificial neural network modeling and optimization of leachable zinc from flour samples by miniaturized homogenous liquid–liquid microextraction
Publication