Search results for: ACTIVE LEARNING
-
Active Learning Based on Crowdsourced Data
PublicationThe paper proposes a crowdsourcing-based approach for annotated data acquisition and means to support Active Learning training approach. In the proposed solution, aimed at data engineers, the knowledge of the crowd serves as an oracle that is able to judge whether the given sample is informative or not. The proposed solution reduces the amount of work needed to annotate large sets of data. Furthermore, it allows a perpetual increase...
-
A Note on Knowledge Management Education: Towards Implementing Active Learning Methods
PublicationKnowledge Management as an area of education is still a big challenge for teachers and practitioners. Nevertheless, there are several useful teaching methods in active education, especially oriented towards courses where innovation and delivering dynamic knowledge are critical. The goal of the paper is to present and discuss criteria relevant in the selection of active educational methods supporting knowledge management courses....
-
Edu Inspiracje WZiE: Active Learning, czyli o mocy aktywnego przetwarzania informacji
Publication -
Active Learning on Ensemble Machine-Learning Model to Retrofit Buildings Under Seismic Mainshock-Aftershock Sequence
PublicationThis research presents an efficient computational method for retrofitting of buildings by employing an active learning-based ensemble machine learning (AL-Ensemble ML) approach developed in OpenSees, Python and MATLAB. The results of the study shows that the AL-Ensemble ML model provides the most accurate estimations of interstory drift (ID) and residual interstory drift (RID) for steel structures using a dataset of 2-, to 9-story...
-
Active learning on stacked machine learning techniques for predicting compressive strength of alkali-activated ultra-high-performance concrete
PublicationConventional ultra-high performance concrete (UHPC) has excellent development potential. However, a significant quantity of CO2 is produced throughout the cement-making process, which is in contrary to the current worldwide trend of lowering emissions and conserving energy, thus restricting the further advancement of UHPC. Considering climate change and sustainability concerns, cementless, eco-friendly, alkali-activated UHPC (AA-UHPC)...
-
Active learning na wykładach
EventsZapraszamy na szkolenie - Active learning na wykładach
-
Active Learning in Higher Education
Journals -
„Active learning w praktyce” - 17. Szkolenie certyfikowane 13.12.2022 r.
e-Learning Courses -
„Active learning w praktyce” - 4. Szkolenie certyfikowane 21.10.2022 r.
e-Learning Courses -
Unsupervised machine-learning classification of electrophysiologically active electrodes during human cognitive task performance
PublicationIdentification of active electrodes that record task-relevant neurophysiological activity is needed for clinical and industrial applications as well as for investigating brain functions. We developed an unsupervised, fully automated approach to classify active electrodes showing event-related intracranial EEG (iEEG) responses from 115 patients performing a free recall verbal memory task. Our approach employed new interpretable...
-
Iterative learning approach to active noise control of highly autocorrelated signals with applications to machinery noise
PublicationThis paper discusses the design and application of iterative learning control (ILC) and repetitive control (RC) for high modal density systems. Typical examples of these systems are structural and acoustical systems considered in active structural acoustic control (ASAC) and active noise control (ANC) applications. The application of traditional ILC and RC design techniques, which are based on a parametric system model, on systems...
-
Active Annotation in Evaluating the Credibility of Web-Based Medical Information: Guidelines for Creating Training Data Sets for Machine Learning
PublicationMethods Results Discussion References Abbreviations Copyright Abstract Background: The spread of false medical information on the web is rapidly accelerating. Establishing the credibility of web-based medical information has become a pressing necessity. Machine learning offers a solution that, when properly deployed, can be an effective tool in fighting medical misinformation on the web. Objective: The aim of this study is to...
-
Exploration of the Solubility Hyperspace of Selected Active Pharmaceutical Ingredients in Choline- and Betaine-Based Deep Eutectic Solvents: Machine Learning Modeling and Experimental Validation
PublicationDeep eutectic solvents (DESs) are popular green media used for various industrial, pharmaceutical, and biomedical applications. However, the possible compositions of eutectic systems are so numerous that it is impossible to study all of them experimentally. To remedy this limitation, the solubility landscape of selected active pharmaceutical ingredients (APIs) in choline chloride- and betaine-based deep eutectic solvents was...
-
Model-free and Model-based Reinforcement Learning, the Intersection of Learning and Planning
PublicationMy doctoral dissertation is intended as the compound of four publications considering: structure and randomness in planning and reinforcement learning, continuous control with ensemble deep deterministic policy gradients, toddler-inspired active representation learning, and large-scale deep reinforcement learning costs.
-
Collaborative Data Acquisition and Learning Support
PublicationWith the constant development of neural networks, traditional algorithms relying on data structures lose their significance as more and more solutions are using AI rather than traditional algorithms. This in turn requires a lot of correctly annotated and informative data samples. In this paper, we propose a crowdsourcing based approach for data acquisition and tagging with support for Active Learning where the system acts as an...
-
Flexible Knowledge–Vision–Integration Platform for Personal Protective Equipment Detection and Classification Using Hierarchical Convolutional Neural Networks and Active Leaning
PublicationThis work is part of an effort to develop of a Knowledge-Vision Integration Platform for Hazard Control (KVIP-HC) in industrial workplaces, adaptable to a wide range of industrial environments. The paper focuses on hazards resulted from the non-use of personal protective equipment (PPE). The objective is to test the capability of the platform to adapt to different industrial environments by simulating the process of randomly selecting...
-
Affective computing and affective learning – methods, tools and prospects
PublicationEvery teacher knows that interest, active participation and motivation are important factors in the learning process. At the same time e-learning environments almost always address only the cognitive aspects of education. This paper provides a brief review of methods used for affect recognition, representation and processing as well as investigates how these methods may be used to address affective aspect of e-education. The paper...
-
Introduction to the special issue on machine learning in acoustics
PublicationWhen we started our Call for Papers for a Special Issue on “Machine Learning in Acoustics” in the Journal of the Acoustical Society of America, our ambition was to invite papers in which machine learning was applied to all acoustics areas. They were listed, but not limited to, as follows: • Music and synthesis analysis • Music sentiment analysis • Music perception • Intelligent music recognition • Musical source separation • Singing...
-
Active Control of Highly Autocorrelated Machinery Noise in Multivariate Nonminimum Phase Systems
PublicationIn this paper, a novel multivariate active noise control scheme, designed to attenuate disturbances with high autocorrelation characteristics and preserve background signals, is proposed. The algorithm belongs to the class of feedback controllers and, unlike the popular feedforward FX-LMS approach, does not require availability of a reference signal. The proposed approach draws its inspiration from the iterative learning control...
-
Pursuing the Deep-Learning-Based Classification of Exposed and Imagined Colors from EEG
PublicationEEG-based brain-computer interfaces are systems aiming to integrate disabled people into their environments. Nevertheless, their control could not be intuitive or depend on an active external stimulator to generate the responses for interacting with it. Targeting the second issue, a novel paradigm is explored in this paper, which depends on a passive stimulus by measuring the EEG responses of a subject to the primary colors (red,...
-
Book Review
PublicationActing over the last three decades as an Editor and Associate Editor for a number of international journals in the general area of cybernetics and AI, as well as a Chair and Co-Chair of numerous conferences in this field, I have had the exciting opportunity to closely witness and to be actively engaged in the stimulating research area of machine learning and its important augmentation with deep learning techniques and technologies. From...
-
СИЛОВОЙ ПРЕОБРАЗОВАТЕЛЬ С АКТИВНЫМ ПОДАВЛЕНИЕМ ВЫСШИХ ГАРМОНИК ДЛЯ СИСТЕМ ЭЛЕКТРОСНАБЖЕНИЯ ЛЕТАТЕЛЬНЫХ АППАРАТОВ (Power converter with active suppression of higher harmonics for aircraft power supply systems)
PublicationПредставлены два алгоритма активной фильтрации для силового преобразователя с активным подавлением высших гармоник. Первый алгоритм основан на дискретном преобразовании Фурье: посредством синтезированной системы управления инвертированные измеренные высшие гармоники напряжения поступают на вход инвертора. Второй метод управления основан на алгоритме с использованием принципов самообучения, что значительно снижает потребность в...
-
Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen
PublicationDeep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental...
-
Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen
PublicationDeep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental...
-
Concrete mix design using machine learning
PublicationDesigning a concrete mix is a process of synthesizing many components, it is not a simple process and requires extensive technical knowledge. The design process itself focuses on obtaining the required strength of concrete. Very often designing a concrete mix takes into account the need to maintain the proper water-demand and frost-resistance features. The parameters that influence the concrete class most significantly are the...
-
Active Kriging-based conjugate first-order reliability method for highly efficient structural reliability analysis using resample strategy
PublicationEfficient structural reliability analysis method is crucial to solving reliability analysis of complex structural problems. High-computational cost and low-failure probability problems greatly limit the efficiency in structural reliability analysis problems, causing the safety and reliability of the structure to be questioned. In this work, a highly efficient structural reliability analysis method coupling active Kriging algorithm...
-
Solubility Characteristics of Acetaminophen and Phenacetin in Binary Mixtures of Aqueous Organic Solvents: Experimental and Deep Machine Learning Screening of Green Dissolution Media
PublicationThe solubility of active pharmaceutical ingredients is a mandatory physicochemical characteristic in pharmaceutical practice. However, the number of potential solvents and their mixtures prevents direct measurements of all possible combinations for finding environmentally friendly, operational and cost-effective solubilizers. That is why support from theoretical screening seems to be valuable. Here, a collection of acetaminophen...
-
Augmenting digital documents with negotiation capability
PublicationActive digital documents are not only capable of performing various operations using their internal functionality and external services, accessible in the environment in which they operate, but can also migrate on their own over a network of mobile devices that provide dynamically changing execution contexts. They may imply conflicts between preferences of the active document and the device the former wishes to execute on. In the...
-
Thriving in multicultural workplace
PublicationThriving at work is defined as the psychological state that links both a sense of vitality and learning. The vitality component of thriving may be seen as positive energy, while learning enhances a sense of competence and efficacy. Thriving sheds new light on individual psychological functioning and the experience of growth in the work context. Thriving at work promotes growth through playing an active role in interaction with...
-
Solubility of dapsone in deep eutectic solvents: Experimental analysis, molecular insights and machine learning predictions
PublicationBackground. Dapsone (DAP) is an anti-inflammatory and antimicrobial active pharmaceutical ingredient used to treat, e.g., AIDS-related diseases. However, low solubility is a feature hampering its efficient use. Objectives. First, deep eutectic solvents...
-
Solvent Screening for Solubility Enhancement of Theophylline in Neat, Binary and Ternary NADES Solvents: New Measurements and Ensemble Machine Learning
PublicationTheophylline, a typical representative of active pharmaceutical ingredients, was selected to study the characteristics of experimental and theoretical solubility measured at 25 °C in a broad range of solvents, including neat, binary mixtures and ternary natural deep eutectics (NADES) prepared with choline chloride, polyols and water. There was a strong synergistic effect of organic solvents mixed with water, and among the experimentally...
-
Decisional DNA for modeling and reuse of experiential clinical assessments in breast cancer diagnosis and treatment
PublicationClinical Decision Support Systems (CDSS) are active knowledge resources that use patient data to generate case specific advice. The fast pace of change of clinical knowledge imposes to CDSS the continuous update of the domain knowledge and decision criteria. Traditional approaches require costly tedious manual maintenance of the CDSS knowledge bases and repositories. Often, such an effort cannot be assumed by medical teams, hence...
-
Passive and Active Measurement Conference
Conferences -
Train the trainer course
PublicationThis chapter presents the concept, evaluation and evaluation results for the train the trainer. This concept of train the trainers is prepared within Workpackage 5 of EU-funded project: MASTER BSR (Erasmus+ Strategic Partnership Programme). Due to the nature of adult learning the content is designed for the use of participatory methods (involved, active). This method uses various techniques of active learning e.g. group work,...
-
Smart Knowledge Engineering for Cognitive Systems: A Brief Overview
PublicationCognition in computer sciences refers to the ability of a system to learn at scale, reason with purpose, and naturally interact with humans and other smart systems, such as humans do. To enhance intelligence, as well as to introduce cognitive functions into machines, recent studies have brought humans into the loop, turning the system into a human–AI hybrid. To effectively integrate and manipulate hybrid knowledge, suitable technologies...
-
Active and Real-Time Database Systems
Conferences -
Akustyczna analiza parametrów ruchu drogowego z wykorzystaniem informacji o hałasie oraz uczenia maszynowego
PublicationCelem rozprawy było opracowanie akustycznej metody analizy parametrów ruchu drogowego. Zasada działania akustycznej analizy ruchu drogowego zapewnia pasywną metodę monitorowania natężenia ruchu. W pracy przedstawiono wybrane metody uczenia maszynowego w kontekście analizy dźwięku (ang.Machine Hearing). Przedstawiono metodologię klasyfikacji zdarzeń w ruchu drogowym z wykorzystaniem uczenia maszynowego. Przybliżono podstawowe...
-
CERTIFICATION SYSTEM AS A TOOL FOR IMPROVING THE SAFETY AND SUSTAINABILITY OF SCHOOL-RELATED TRAVELS
PublicationDespite the well-established physical, social, emotional, cognitive, and spatial benefits of active and autonomous school commuting of children and adolescents', many are driven by car. Pilot surveys and field research held in 2019 in 10 Gdansk primary schools confirmed this trend. The article presents a certification system for schools, commissioned by the City of Gdańsk, which is an element of a systemic solution shaping patterns...
-
Knowledge pills in Education and Training: A Literature Review
PublicationObject and purpose: Knowledge pills (KPs) are a technique for transferring knowledge through short factual batches of content. In education and vocational training, they can help learners acquire specific pieces of knowledge in a few minutes, through a “microteaching” approach where learners can be involved in active and interactive exercises, quizzes, and games. Thanks to the advancements of multimedia platforms, they can contain...
-
Managerial Energy in Sustainable Enterprises: Organizational Wisdom Approach
PublicationThe circular economy (CE) as an idea involves applying the concept of sustainable development that has been gaining worldwide support. This shift in perception of energy and resource-use from its linear to circular forms creates a specific business environment, which constitutes the subject of this research. This article aims to analyze the impact of a manager’s energy on organizational wisdom, focusing on its circular business...
-
Sensing Direction of Human Motion Using Single-Input-Single-Output (SISO) Channel Model and Neural Networks
PublicationObject detection Through-the-Walls enables localization and identification of hidden objects behind the walls. While numerous studies have exploited Channel State Information of Multiple Input Multiple Output (MIMO) WiFi and radar devices in association with Artificial Intelligence based algorithms (AI) to detect and localize objects behind walls, this study proposes a novel non-invasive Through-the-Walls human motion direction...
-
Review of Segmentation Methods for Coastline Detection in SAR Images
PublicationSynthetic aperture radar (SAR) images acquired by airborne sensors or remote sensing satellites contain the necessary information that can be used to investigate various objects of interest on the surface of the Earth, including coastlines. The coastal zone is of great economic importance and is also very densely populated. The intensive and increasing use of coasts and changes of coastlines motivate researchers to try to assess...
-
Experimental and Theoretical Insights into the Intermolecular Interactions in Saturated Systems of Dapsone in Conventional and Deep Eutectic Solvents
PublicationSolubility is not only a crucial physicochemical property for laboratory practice but also provides valuable insight into the mechanism of saturated system organization, as a measure of the interplay between various intermolecular interactions. The importance of these data cannot be overstated, particularly when dealing with active pharmaceutical ingredients (APIs), such as dapsone. It is a commonly used anti-inflammatory and...
-
Computational Methods for Liver Vessel Segmentation in Medical Imaging: A Review
PublicationThe segmentation of liver blood vessels is of major importance as it is essential for formulating diagnoses, planning and delivering treatments, as well as evaluating the results of clinical procedures. Different imaging techniques are available for application in clinical practice, so the segmentation methods should take into account the characteristics of the imaging technique. Based on the literature, this review paper presents...
-
Implementation of the Concept of Flexicurity in the Selected Countries of Central Eastern Europe
PublicationThe CEE countries have to create their own flexicurity policies which would take into account the employment policy guidelines, cultural traditions and socio-economic development. The aim of this article is to examine and evaluate the implementation of the flexicurity concept on the basis of the adopted set of composite indicators. The study covers 9 countries of the CEE region, and the research period covers the years 2007 and 2013....
-
Raw data of AuAg nanoalloy plasmon resonances used for machine learning method
Open Research DataRaw data used for machine learning process. UV-vis measurements of AuAg alloyed nanostructures created from thin films. Plasmonic band position dependence on fabrication parameters. Small presentation reviewing achieved structures and their properties.
-
Justyna Szostak dr inż.
PeopleI Gdańsk University of Technology: Chair of the Rector’s Internationalization Committee (October 2020 - Present) Erasmus + Coordinator for students and staff members, Faculty of Applied Physics and Mathematics (Mar 2017 - Present) Dean's Proxy for Internationalization, Faculty of Applied Physics and Mathematics (October 2020 - Present) Coordinator of the International Relations Office of the Faculty of Applied Physics and...
-
Source code - AI models (MLM1-5 - series I-III - QNM opt)
Open Research DataSource code - AI models (MLM1-5 - series I-III - QNM opt) for the paper "Computational Complexity and Its Influence on Concrete Compressive Strength Prediction Capabilities of Machine Learning Models for Concrete Mix Design Support" accepted for publication.
-
Predicting sulfanilamide solubility in the binary mixtures using a reference solvent approach
PublicationBackground. Solubility is a fundamental physicochemical property of active pharmaceutical ingredients. The optimization of a dissolution medium aims not only to increase solubility and other aspects are to be included such as environmental impact, toxicity degree, availability, and costs. Obtaining comprehensive...
-
Bi-GRU-APSO: Bi-Directional Gated Recurrent Unit with Adaptive Particle Swarm Optimization Algorithm for Sales Forecasting in Multi-Channel Retail
PublicationIn the present scenario, retail sales forecasting has a great significance in E-commerce companies. The precise retail sales forecasting enhances the business decision making, storage management, and product sales. Inaccurate retail sales forecasting can decrease customer satisfaction, inventory shortages, product backlog, and unsatisfied customer demands. In order to obtain a better retail sales forecasting, deep learning models...