Filters
total: 2563
-
Catalog
- Publications 2150 available results
- Journals 41 available results
- Conferences 23 available results
- Publishing Houses 1 available results
- People 76 available results
- Projects 8 available results
- e-Learning Courses 26 available results
- Events 8 available results
- Open Research Data 230 available results
displaying 1000 best results Help
Search results for: DEEP BELIEF NETWORK
-
Tool Wear Monitoring Using Improved Dragonfly Optimization Algorithm and Deep Belief Network
PublicationIn recent decades, tool wear monitoring has played a crucial role in the improvement of industrial production quality and efficiency. In the machining process, it is important to predict both tool cost and life, and to reduce the equipment downtime. The conventional methods need enormous quantities of human resources and expert skills to achieve precise tool wear information. To automatically identify the tool wear types, deep...
-
Detection of Alzheimer's disease using Otsu thresholding with tunicate swarm algorithm and deep belief network
PublicationIntroduction: Alzheimer’s Disease (AD) is a degenerative brain disorder characterized by cognitive and memory dysfunctions. The early detection of AD is necessary to reduce the mortality rate through slowing down its progression. The prevention and detection of AD is the emerging research topic for many researchers. The structural Magnetic Resonance Imaging (sMRI) is an extensively used imaging technique in detection of AD, because...
-
Deep neural network architecture search using network morphism
PublicationThe paper presents the results of the research on neural architecture search (NAS) algorithm. We utilized the hill climbing algorithm to search for well-performing structures of deep convolutional neural network. Moreover, we used the function preserving transformations which enabled the effective operation of the algorithm in a short period of time. The network obtained with the advantage of NAS was validated on skin lesion classification...
-
The impact of the AC922 Architecture on Performance of Deep Neural Network Training
PublicationPractical deep learning applications require more and more computing power. New computing architectures emerge, specifically designed for the artificial intelligence applications, including the IBM Power System AC922. In this paper we confront an AC922 (8335-GTG) server equipped with 4 NVIDIA Volta V100 GPUs with selected deep neural network training applications, including four convolutional and one recurrent model. We report...
-
Deep convolutional neural network for predicting kidney tumour malignancy
PublicationPurpose: According to the statistics, up to 15-20% of removed solid kidney tumors turn out to be benign in postoperative histopathological examination, despite having been identified as malignant by a radiologist. The aim of the research was to limit the number of unnecessary nephrectomies of benign tumors. Methods or Background: We propose a machine-aided diagnostic system for kidney...
-
Categorization of emotions in dog behavior based on the deep neural network
PublicationThe aim of this article is to present a neural system based on stock architecture for recognizing emotional behavior in dogs. Our considerations are inspired by the original work of Franzoni et al. on recognizing dog emotions. An appropriate set of photographic data has been compiled taking into account five classes of emotional behavior in dogs of one breed, including joy, anger, licking, yawning, and sleeping. Focusing on a particular...
-
DCANet: deep context attention network for automatic polyp segmentation
Publication -
Benchmarking Deep Neural Network Training Using Multi- and Many-Core Processors
PublicationIn the paper we provide thorough benchmarking of deep neural network (DNN) training on modern multi- and many-core Intel processors in order to assess performance differences for various deep learning as well as parallel computing parameters. We present performance of DNN training for Alexnet, Googlenet, Googlenet_v2 as well as Resnet_50 for various engines used by the deep learning framework, for various batch sizes. Furthermore,...
-
Comparison of Deep Neural Network Learning Algorithms for Mars Terrain Image Segmentation
PublicationThis paper is dedicated to the topic of terrain recognition on Mars using advanced techniques based on the convolutional neural networks (CNN). The work on the project was conducted based on the set of 18K images collected by the Curiosity, Opportunity and Spirit rovers. The data were later processed by the model operating in a Python environment, utilizing Keras and Tensorflow repositories. The model benefits from the pretrained...
-
Dataset Related Experimental Investigation of Chess Position Evaluation Using a Deep Neural Network
PublicationThe idea of training Articial Neural Networks to evaluate chess positions has been widely explored in the last ten years. In this paper we investigated dataset impact on chess position evaluation. We created two datasets with over 1.6 million unique chess positions each. In one of those we also included randomly generated positions resulting from consideration of potentially unpredictable chess moves. Each position was evaluated...
-
Modeling and Simulation for Exploring Power/Time Trade-off of Parallel Deep Neural Network Training
PublicationIn the paper we tackle bi-objective execution time and power consumption optimization problem concerning execution of parallel applications. We propose using a discrete-event simulation environment for exploring this power/time trade-off in the form of a Pareto front. The solution is verified by a case study based on a real deep neural network training application for automatic speech recognition. A simulation lasting over 2 hours...
-
Performance and Energy Aware Training of a Deep Neural Network in a Multi-GPU Environment with Power Capping
PublicationIn this paper we demonstrate that it is possible to obtain considerable improvement of performance and energy aware metrics for training of deep neural networks using a modern parallel multi-GPU system, by enforcing selected, non-default power caps on the GPUs. We measure the power and energy consumption of the whole node using a professional, certified hardware power meter. For a high performance workstation with 8 GPUs, we were...
-
Big Data from Sensor Network via Internet of Things to Edge Deep Learning for Smart City
PublicationData from a physical world is sampled by sensor networks, and then streams of Big Data are sent to cloud hosts to support decision making by deep learning software. In a smart city, some tasks may be assigned to smart devices of the Internet of Things for performing edge computing. Besides, a part of workload of calculations can be transferred to the cloud hosts. This paper proposes benchmarks for division tasks between an edge...
-
Hybrid Inception-embedded deep neural network ResNet for short and medium-term PV-Wind forecasting
Publication -
Using Deep Neural Network Methods for Forecasting Energy Productivity Based on Comparison of Simulation and DNN Results for Central Poland—Swietokrzyskie Voivodeship
Publication -
Using Deep Neural Network Methods for Forecasting Energy Productivity Based on Comparison of Simulation and DNN Results for Central Poland – Swietokrzyskie Voivodeship
Publication -
Paweł Rościszewski dr inż.
PeoplePaweł Rościszewski received his PhD in Computer Science at Gdańsk University of Technology in 2018 based on PhD thesis entitled: "Optimization of hybrid parallel application execution in heterogeneous high performance computing systems considering execution time and power consumption". Currently, he is an Assistant Professor at the Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Poland....
-
Modelowanie dokładności radiolokalizowania w różnych warunkach środowiskowych przy wykorzystaniu interfejsu radiowego 5G-NR
PublicationW artykule przedstawiono wyniki eksperymentalnych badań dokładności estymacji położenia terminala użytkownika korzystającego~z interfejsu radiowego 5G-NR. W środowisku miejskim dokonano rejestracji rzeczywistych sygnałów sieci 5G, a następnie przeprowadzono badania numeryczne. Celem było zweryfikowanie różnic dokładności estymacji położenia w trzech różnych środowiskach: wewnątrz- i zewnątrzbudynkowym oraz tzw. deep-indoor.
-
Network on Chip implementation using FPGAs resources
PublicationW artykule przedstawiono implementację sieci typu ''Network on Chip'' w układach FPGA. Sieci typu ''Network on Chip'' stały się bardzo interesującym i obiecującym rozwiązaniem dla systemów typu ''System on Chip'' które charakteryzują się intensywną komunikacją wewnętrzną. Ze względu na inne paradygmaty projektowania nie ma obecnie dostępnych efektywnych platform do budowy prototypów sieci typu ''Network on Chip'' i ich weryfikacji....
-
Decision making process using deep learning
PublicationEndüstri 4.0, dördüncü endüstri devrimi veya Endüstriyel Nesnelerin İnterneti (IIoT) olarak adlandırılan sanayi akımı, işletmelere, daha verimli, daha büyük bir esneklikle, daha güvenli ve daha çevre dostu bir şekilde üretim yapma imkanı sunmaktadır. Nesnelerin İnterneti ile bağlantılı yeni teknoloji ve hizmetler birçok endüstriyel uygulamada devrim niteliği taşımaktadır. Fabrikalardaki otomasyon, tahminleyici bakım (PdM – Predictive...
-
Integracja bezprzewodowych heterogenicznych sieci IP dla poprawy efektywności transmisji danych na morzu
PublicationWraz ze wzrostem istotności środowiska morskiego w naszym codziennym życiu np. w postaci zwiększonego wolumenu transportu realizowanego drogą morską. czy zintensyfikowanych prac dotyczących obserwacji i monitoringu środowiska morskiego, wzrasta również potrzeba opracowania efektywnych systemów komunikacyjnych dedykowanych dla tego środowiska. Heterogeniczne systemy łączności bezprzewodowej integrowane na poziomie warstwy sieciowej...
-
Olgun Aydin dr
PeopleOlgun Aydin finished his PhD by publishing a thesis about Deep Neural Networks. He works as a Principal Machine Learning Engineer in Nike, and works as Assistant Professor in Gdansk University of Technology in Poland. Dr. Aydin is part of editorial board of "Journal of Artificial Intelligence and Data Science" Dr. Aydin served as Vice-Chairman of Why R? Foundation and is member of Polish Artificial Intelligence Society. Olgun is...
-
Network economy and innovation policy st 2024/2025
e-Learning CoursesGlobal Studies / Economics Analytics, II stopień (magisterskie), 3 semestr The aim of the course is to provide framework for exploring innovation theory in the context of the network economy.
-
Sathwik Prathapagiri
PeopleSathwik was born in 2000. In 2022, he completed his Master’s of Science in Biological Sciences and Bachelor’s of Engineering in Chemical Engineering in an integrated dual degree program from Birla Institute Of Technology And Science, Pilani, India. During his final year, he worked as a research intern under Dr Giri P Krishnan at Bazhenov lab, University of California San Diego school of medicine to pursue his Master’s Thesis on...
-
Deep Learning Basics 2023/24
e-Learning CoursesA course about the basics of deep learning intended for students of Computer Science. It includes an introduction to supervised machine learning, the architecture of basic artificial neural networks and their training algorithms, as well as more advanced architectures (convolutional networks, recurrent networks, transformers) and regularization and optimization techniques.
-
Sense of safety and opinions about COVID-19 vaccinations in Polish school teachers: The role of conspiracy theories belief and fear of COVID-19
PublicationThe co-occurrence of COVID-19 conspiracy theories (CCT) and fear of the coronavirus (FCV) can be linked to how safe people feel and how much they endorse vaccinations. School teachers were one of the vaccination priority groups in Poland. We conducted three cross-sectional studies (N1 = 1006; N2 = 1689; N3 = 627) to find out the potential interactive effects of CCT belief and FCV in predicting sense of safety (SoS; Studies 1-3),...
-
Poprawa jakości klasyfikacji głębokich sieci neuronowych poprzez optymalizację ich struktury i dwuetapowy proces uczenia
PublicationW pracy doktorskiej podjęto problem realizacji algorytmów głębokiego uczenia w warunkach deficytu danych uczących. Głównym celem było opracowanie podejścia optymalizującego strukturę sieci neuronowej oraz zastosowanie uczeniu dwuetapowym, w celu uzyskania mniejszych struktur, zachowując przy tym dokładności. Proponowane rozwiązania poddano testom na zadaniu klasyfikacji znamion skórnych na znamiona złośliwe i łagodne. W pierwszym...
-
Neural networks and deep learning
PublicationIn this chapter we will provide the general and fundamental background related to Neural Networks and Deep Learning techniques. Specifically, we divide the fundamentals of deep learning in three parts, the first one introduces Deep Feed Forward Networks and the main training algorithms in the context of optimization. The second part covers Convolutional Neural Networks (CNN) and discusses their main advantages and shortcomings...
-
Deep neural networks for data analysis
e-Learning CoursesThe aim of the course is to familiarize students with the methods of deep learning for advanced data analysis. Typical areas of application of these types of methods include: image classification, speech recognition and natural language understanding. Celem przedmiotu jest zapoznanie studentów z metodami głębokiego uczenia maszynowego na potrzeby zaawansowanej analizy danych. Do typowych obszarów zastosowań tego typu metod należą:...
-
Evidence-Based Risk Management for Civil Engineering Projects Using Bayesian Belief Networks (BBN)
PublicationThe authors are seeking new methods for improving the efficiency of the investments associated with the maintenance and operation of existing civil engineering structures. It is demonstrated how the knowledge about the elements of construction and operation phases and their relationships, combined with monitoring data can be used for more effective management of the risks associated with civil engineering projects. The methodology...
-
Deep neural networks for data analysis 24/25
e-Learning CoursesThis course covers introduction to supervised machine learning, construction of basic artificial deep neural networks (DNNs) and basic training algorithms, as well as the overview of popular DNNs architectures (convolutional networks, recurrent networks, transformers). The course introduces students to popular regularization techniques for deep models. Besides theory, large part of the course is the project in which students apply...
-
Deep Learning
PublicationDeep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...
-
Maritime Communications Network Development Using Virtualised Network Slicing of 5G Network
PublicationThe paper presents the review on perspectives of maritime systems development at the context of 5G systems implementation and their main properties. Firstly, 5G systems requirements and principles are discussed, which can be important for maritime applications. Secondly, the problems of network softwarisation, virtualisation and slicing, and possible types of services for potential implementation in 5G marine applications are described....
-
Journal of Education & Christian Belief
Journals -
Resource constrained neural network training
PublicationModern applications of neural-network-based AI solutions tend to move from datacenter backends to low-power edge devices. Environmental, computational, and power constraints are inevitable consequences of such a shift. Limiting the bit count of neural network parameters proved to be a valid technique for speeding up and increasing efficiency of the inference process. Hence, it is understandable that a similar approach is gaining...
-
Comparison of Deep Learning Approaches in Classification of Glacial Landforms
PublicationGlacial landforms, created by the continuous movements of glaciers over millennia, are crucial topics in geomorphological research. Their systematic analysis affords invaluable insights into past climatic oscillations and augments understanding of long-term climate change dynamics. The classification of these types of terrain traditionally depends on labor-intensive manual or semi-automated methods. However, the emergence of automated...
-
Deep Learning w Keras
e-Learning CoursesKurs przeznaczony dla słuchaczy studiów podyplomowych Sztuczna inteligencja i automatyzacja procesów biznesowych w ujęciu praktycznym - edycja biznesowa.
-
Marzena Starnawska dr
People -
A Closed Bipolar Electrochemical Cell for the Interrogation of BDD Single Particles: Electrochemical Advanced Oxidation
PublicationA closed bipolar electrochemical cell containing two conductive boron-doped diamond (BDD) particles of size 250 – 350 m, produced by high-pressure high-temperature (HPHT) synthesis, has been used to demonstrate the applicability of single BDD particles for electrochemical oxidative degradation of the dye, methylene blue (MB). The cell is fabricated using stereolithography 3D printing and the BDD particles are located at either...
-
Experimental tests of reinforced concrete deep-beams
PublicationThe paper presents results of experimental research of the reinforced concrete deep beam with a spatial arrangement. Tested structural elements consist of the cantilever deep beam loaded on the height and transverse deep beam with hanging on it another one. The analysis includes crack morphology, effort of steel and load distribution. The article verified effectiveness of two different kind of reinforcement in both tested deep...
-
Position Estimation in Mixed Indoor-Outdoor Environment Using Signals of Opportunity and Deep Learning Approach
PublicationTo improve the user's localization estimation in indoor and outdoor environment a novel radiolocalization system using deep learning dedicated to work both in indoor and outdoor environment is proposed. It is based on the radio signatures using radio signals of opportunity from LTE an WiFi networks. The measurements of channel state estimators from LTE network and from WiFi network are taken by using the developed application....
-
Deep learning for recommending subscription-limited documents
PublicationDocuments recommendation for a commercial, subscription-based online platform is important due to the difficulty in navigation through a large volume and diversity of content available to clients. However, this is also a challenging task due to the number of new documents added every day and decreasing relevance of older contents. To solve this problem, we propose deep neural network architecture that combines autoencoder with...
-
Selected Technical Issues of Deep Neural Networks for Image Classification Purposes
PublicationIn recent years, deep learning and especially Deep Neural Networks (DNN) have obtained amazing performance on a variety of problems, in particular in classification or pattern recognition. Among many kinds of DNNs, the Convolutional Neural Networks (CNN) are most commonly used. However, due to their complexity, there are many problems related but not limited to optimizing network parameters, avoiding overfitting and ensuring good...
-
EXPERIMENTAL AND THEORETICAL FLOW OF THE FORCES IN DEEP BEAMS WITH CANTILEVAR
PublicationThis article presents the results of experimental research carried out on deep beams with cantilever which was loaded throughout the depth. The main deep beam was directly simply supported on the one side. On the other side the deep beam was suspended in another deep member situated at right angles. All deep beams created a spatial arrangement. The paper is focused on the analysis of the cracks morphology and flow of the internal...
-
Classifying Emotions in Film Music - A Deep Learning Approach
PublicationThe paper presents an application for automatically classifying emotions in film music. A model of emotions is proposed, which is also associated with colors. The model created has nine emotional states, to which colors are assigned according to the color theory in film. Subjective tests are carried out to check the correctness of the assumptions behind the adopted emotion model. For that purpose, a statistical analysis of the...
-
Deep Learning Optimization for Edge Devices: Analysis of Training Quantization Parameters
PublicationThis paper focuses on convolution neural network quantization problem. The quantization has a distinct stage of data conversion from floating-point into integer-point numbers. In general, the process of quantization is associated with the reduction of the matrix dimension via limited precision of the numbers. However, the training and inference stages of deep learning neural network are limited by the space of the memory and a...
-
LEGO bricks for training classification network
Open Research DataThe data set contains images of 447 different classes of LEGO bricks used for training LEGO bricks classification network. The dataset contains two types of images: photos (10%) and renders (90%) aggregated into respective directories. Each directory (photos and renders) contains 447 directories labeled as the official brick type number. The images...
-
Deep Learning-Based LOS and NLOS Identification in Wireless Body Area Networks
PublicationIn this article, the usage of deep learning (DL) in ultra-wideband (UWB) Wireless Body Area Networks (WBANs) is presented. The developed approach, using channel impulse response, allows higher efficiency in identifying the direct visibility conditions between nodes in off-body communication with comparison to the methods described in the literature. The effectiveness of the proposed deep feedforward neural network was checked on...
-
Analysis of 2D Feature Spaces for Deep Learning-based Speech Recognition
Publicationconvolutional neural network (CNN) which is a class of deep, feed-forward artificial neural network. We decided to analyze audio signal feature maps, namely spectrograms, linear and Mel-scale cepstrograms, and chromagrams. The choice was made upon the fact that CNN performs well in 2D data-oriented processing contexts. Feature maps were employed in the Lithuanian word recognition task. The spectral analysis led to the highest word...
-
Training of Deep Learning Models Using Synthetic Datasets
PublicationIn order to solve increasingly complex problems, the complexity of Deep Neural Networks also needs to be constantly increased, and therefore training such networks requires more and more data. Unfortunately, obtaining such massive real world training data to optimize neural networks parameters is a challenging and time-consuming task. To solve this problem, we propose an easy-touse and general approach to training deep learning...