Search results for: FABRY–PÉROT INTERFEROMETER
-
The low coherence Fabry-Pérot interferometer with diamond and ZnO layers
PublicationThe authors present a fiber-optic Fabry-Pérot interferometer built with the application of diamond and zinc oxide (ZnO) thin layers. Thin ZnO films were deposited on the tip of a standard telecommunication single-mode optical fiber (SMF- 28) while the diamond layer was grown on the plate of silicon substrate. Investigated ZnO layers were fabricated by atomic layer deposition (ALD) and the diamond films were deposited using Microwave...
-
Nitrogen-doped diamond thin films: potential application in Fabry-Pérot interferometer
PublicationIn this paper we present results of preliminary research of using nitrogen-doped diamond (NDD) films as reflective layer in Fabry-Pérot interferometer. NDD films were deposited on Si substrates by Microwave Plasma Enhanced Chemical Vapor Deposition (MPECVD) with the use of CH4, H2 and N2 gas mixtures. During deposition process methane flow rate varied while nitrogen flow was constant. We performed series of measurements which showed...
-
Application of boron-doped diamond film and ZnO layer in the Fabry-Pérot interferometer
PublicationIn this article there have been presented the use of boron-doped diamond films for sensor applications. The low-finesse Fabry-Pérot interferometer working in the reflective mode has been implemented. Two kinds of reflective layers have been elaborated: boron-doped diamond thin films and zinc-oxide (ZnO) layer. Thin ZnO layers were deposited by Atomic Layer Deposition (ALD) on the face of a standard telecommunication single-mode...
-
Enhancement of fiber-optic low-coherence Fabry-Pérot interferometer with ZnO ALD films
PublicationIn this paper investigation of the enhanced fiber-optic low coherence Fabry-Pérot interferometer with zinc oxide (ZnO) film deposited by atomic layer deposition (ALD) was presented. Model of the interferometer, which was constructed of single-mode optical fiber with applied ZnO ALD films, was built. The interferometer was also examined by means of experiment. Measurements were performed for both reflective and transmission modes,...
-
Spectral reflectance and transmission modeling of multi-cavity Fabry-Pérot interferometer with ZnO thin films
PublicationIn this paper spectral reflectance and transmission of a low-coherence fiber-optic Fabry-Pérot interferometer with thin ZnO layers is analyzed using a multi-cavity approach. In the investigated setup two standard single-mode optical fibers (SMF-28) with thin ZnO films deposited on their end-faces form an extrinsic Fabry-Pérot interferometer with air cavity. Calculations of the spectral response of the interferometer were performed...
-
Tuning transfer function of fiber-optic Fabry-Pérot interferometer via introduction of birefringence in the cavity
PublicationThe study investigates the impact of birefringence exhibited by the cavity material of a fiber-optic Fabry-Pérot interferometer on its transfer function. The theoretical approach to analyze the effect of birefringence in the cavity of a plane Fabry-Pérot interferometer is described. The case of high- and low-finesse interferometer is investigated. It is shown that introduction of a birefringent medium of optimized parameters can...
-
Response of a fiber-optic Fabry-Pérot interferometer to refractive index and absorption changes – modelling and experiments
PublicationThis paper describes how the refractive index and the absorption of investigated substances change the spectrum of the optical radiation at the output of the fiber-optic Fabry-Pérot interferometer. The modeling of the operation of the interferometer takes into account not only the spectra of the refractive index and the absorption of the medium that is inside the cavity, but also spectra of the refractive indices of the core and...
-
Fiber optic low-coherence Fabry-Pérot interferometer with ZnO layers in transmission and reflective mode: comparative study
PublicationA construction of a low-coherence fiber-optic Fabry-Pérot interferometer using a thin ZnO layer as a reflective surfaces was proposed and examined. In the investigated setup, the ZnO layer of thickness 200 nm were deposited on the face of the standard telecommunication single-mode optical fiber (SMF-28). Measurements of interference signal were performed for the interferometer working in the transmission and reflective mode, as...
-
The optimal construction of fiber-optic Fabry-Perot interferometer
PublicationTematem artykułu jest optymalizacja sensorów światłowodowych, wykorzystujących interferometer Fabry-Perota, pracujących w modzie odbiciowym. Celem optymalizacji była maksymalizacja rozdzielczości i dokładności sensora. Autorzy przedstawili analizę teoretyczną oraz wyniki eksperymentalnej optymalizacji światłowodowego interferometru Fabry-Perota, zaprojektowanego i zrealizowanego w laboratorium KOiSE PG.
-
Fiber-optic Fabry-Pérot sensors – modeling versus measurements results
PublicationThis paper describes how parameters of investigated substances and the fiber-optic Fabry-Pérot sensing interferometer affect the spectrum of the optical radiation at the output of the sensor. First, the modeling of the operation of the sensing interferometer was conducted. Most important parameters and effects that were taken into account are: dependences of the refractive indices of the core and the cladding, as well the mode...
-
Application of Thin ZnO ALD Layers in Fiber-Optic Fabry-Pérot Sensing Interferometers
PublicationIn this paper we investigated the response of a fiber-optic Fabry-Pérot sensing interferometer with thin ZnO layers deposited on the end faces of the optical fibers forming the cavity. Standard telecommunication single-mode optical fiber (SMF-28) segments were used with the thin ZnO layers deposited by Atomic Layer Deposition (ALD). Measurements were performed with the interferometer illuminated by two broadband sources operating...
-
Optimization of a Fabry-Perot Sensing Interferometer design for an optical fiber sensor of hematocrit level
PublicationContinuous measurement of the hemato crit level in blo o d can p otentially b e p erformed using optical bre sensors. The FabryPerot interferometric sensors are a promising candidate in this application. The most imp ortant step in the design of the sensor is design of the sensing interferometer. Adequate cavity length and high interference contrast are two most imp ortant requirements in this application. The design metho d of...
-
Application of thin diamond films in low-coherence fiber-optic Fabry Pérot displacement sensor
PublicationThe novel fiber-optic low coherence sensor with thin diamond films is demonstrated. The undoped and boron-doped diamond films were elaborated by the use of the microwave plasma enhanced chemical vapor deposition (μPE CVD) system. The optical signal from the Fabry–Pérot cavity made with the application of those thin films is sensitive to displacement. The sensor characterization was made in the range of 0–600 μm. The measurements...
-
ALD thin ZnO layer as an active medium in a fiber-optic Fabry–Perot interferometer
Publication -
ALD thin ZnO layer as an active medium in a fiber-optic Fabry-Perot interferometer
Publication.
-
QUASI-DISTRIBUTED NETWORK OF LOW-COHERENCE FIBER-OPTIC FABRY-PÉROT SENSORS WITH CAVITY LENGTH-BASED ADDRESSING
PublicationDistributed measurement often relies on sensor networks. In this paper, we present the construction of low coherent fiber-optic Fabry-Pérot sensors connected into a quasi-distributed network. We discuss the mechanism of spectrum modulation in this type of sensor and the constraints of assembly of such sensors in the network. Particular attention was paid to separate the signals from individual sensors, which can be achieved by...
-
Application of the Fractional Fourier Transform for dispersion compensation in signals from a fiber-based Fabry-Perot interferometer
PublicationOptical methods of measurement do not require contact of a probe and the object under study, and thus have found use in a broad range of applications such as nondestructive testing (NDT), where noninvasive measurement is crucial. Measuring the refractive index of a material can give a valuable insight into its composition. Low‑coherence radiation sources enable measurement of the sample’s properties across a wide spectrum, while...
-
Application of thin dielectric films in low coherence fiber-optic Fabry-Pérot sensing interferometers: comparative study
Publication -
Computer-aided analysis of signals from a low-coherence Fabry-Perot interferometer used for measurements of biological samples
PublicationThe aim of the study was to develop an automated computer-aided system for analysis of spectrograms obtained from measurements of biological samples performed with a low-coherence Fabry-Pérot interferometer. Information necessary to determine dispersion characteristics of measured materials can be calculated from the positions of the maxima and minima that are present in their spectra. The main challenge faced during the development...
-
Determination of refractive index dispersion using fiber-optic low-coherence Fabry–Perot interferometer: implementation and validation
PublicationWe present the implementation and validation of low-coherence Fabry–Perot interferometer for refractive index dispersion measurements of liquids. A measurement system has been created with the use of four superluminescent diodes with different optical parameters, a fiber-optic coupler and an optical spectrum analyzer. The Fabry–Perot interferometer cavity has been formed by the fiber-optic end and mirror surfaces mounted on a micromechanical...
-
Detection of immunological agent by optical fiber sensor: preliminary study
PublicationThe objective of this study is the application of optical methods for detection of immunological agent concentration. As the agent we used the Cyclaid, produced by Apotex Inc. In this article we investigated different Cyclaid concentrations in water. We used a Fabry-Pérot interferometer working in a reflective mode, the measurements were performed with source with central wavelength λ = 1550 nm. The preliminary investigation have...
-
Tailoring the optical parameters of optical fiber interferometer with dedicated boron-doped nanocrystalline diamond thin film
PublicationOptical fiber interferometer using nanocrystalline boron-doped diamond film was investigated. The diamond films were deposited on glass plates using a Microwave Plasma-Enhanced Chemical Vapour Deposition (μPE CVD) sys-tem. The growth time was 3h, with boron doping level of 10 000 ppm producing films (B-NCD-10) of thickness ~ 200 nm. The presence of boron atoms in the diamond film is evident in Raman spectrum as peaks at 1212 cm-1...
-
Fiber optic displacement sensor with signal analysis in spectral domain
PublicationIn this paper, a study of a low-coherence fiber optic displacement sensor is presented. The sensor consisted of a broadband source whose central wavelength was either at 1310 nm or 1550 nm, a sensing Fabry-Pérot interferometer operating in reflective mode and an optical spectrum analyzer acting as the detection setup. All these components were connected by a single-mode fiber coupler. Metrological parameters of the sensor were...
-
Temperature Sensors Based on Polymer Fiber Optic Interferometer
PublicationTemperature measurements are of great importance in many fields of human activities, including industry, technology, and science. For example, obtaining a certain temperature value or a sudden change in it can be the primary control marker of a chemical process. Fiber optic sensors have remarkable properties giving a broad range of applications. They enable continuous real-time temperature control in difficult-to-reach areas, in...
-
Low-Coherence Interferometric Fiber-Optic Sensors with Potential Applications as Biosensors
PublicationFiber-optic Fabry-Pérot interferometers (FPI) can be applied as optical sensors, and excellent measurement sensitivity can be obtained by fine-tuning the interferometer design. In this work, we evaluate the ability of selected dielectric thin films to optimize the reflectivity of the Fabry-Pérot cavity. The spectral reflectance and transmittance of dielectric films made of titanium dioxide (TiO2) and aluminum oxide (Al2O3) with...
-
Application of titanium dioxide thin films in fiber optic sensors
PublicationThe advance in the nanotechnology and fabrication of micro- and nanostructures has significant impact on development of new optical sensors. Presented study focuses on the applications of the titanium dioxide (TiO2) thin films in fiber optic sensors. The concept of a sensing fiber optic interferometer integrating TiO2 thin film is presented. The cavity of this interferometer is delimited by a 80 nm film fabricated on the end-face...
-
Low-Coherence Interferometric Fiber-Optic Sensors with Potential Applications as Biosensors
PublicationFiber-optic Fabry-Pérot interferometers (FPI) can be applied as optical sensors, and excellent measurement sensitivity can be obtained by fine-tuning the interferometer design. In this work, we evaluate the ability of selected dielectric thin films to optimize the reflectivity of the Fabry-Pérot cavity. The spectral reflectance and transmittance of dielectric films made of titanium dioxide (TiO2) and aluminum oxide (Al2O3) with...
-
Spectroscopic Optical Coherence Tomography for Thin Layer and Foil Measurements
PublicationThe main goal of this research was to assess if it is possible to evaluate the thickness of thin layers (both thin films on the surface and thin layers below the surface of the tested object) and foils using optical coherence tomography (OCT) for thickness assessment under the resolution of the standard commercially available OCT measurement system. In the proposed solution, light backscattered from the evaluated thin layer has...
-
Nitrogen-Doped Diamond Film for Optical Investigation of Hemoglobin Concentration
PublicationIn this work we present the fabrication and characterization of a diamond film which can be utilized in the construction of optical sensors for the investigation of biological samples. We produced a nitrogen-doped diamond (NDD) film using a microwave plasma enhanced chemical vapor deposition (MWPECVD) system. The NDD film was investigated with the use of scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman...
-
FIBRE-OPTIC SENSOR FOR SIMULTANEOUS MEASUREMENT OF THICKNESSAND REFRACTIVE INDEX OF LIQUID LAYERS
PublicationIn this paper, we present a fibre-optic sensor for simultaneous measurement of refractive index and thickness of liquid layers. We designed an experimental low-coherence setup with two broadband light sources and an extrinsic fibre-optic Fabry–Pérot interferometer acting as the sensing head. We examined how the refractive index of a liquid film and its thickness affect spectrum at the output of a fibre-optic interferometer. We...
-
Doped Nanocrystalline Diamond Films as Reflective Layers for Fiber-Optic Sensors of Refractive Index of Liquids
PublicationThis paper reports the application of doped nanocrystalline diamond (NCD) films—nitrogen-doped NCD and boron-doped NCD—as reflective surfaces in an interferometric sensor of refractive index dedicated to the measurements of liquids. The sensor is constructed as a Fabry–Pérot interferometer, working in the reflective mode. The diamond films were deposited on silicon substrates by a microwave plasma enhanced chemical vapor deposition...
-
Response of a New Low-Coherence Fabry-Perot Sensor to Hematocrit Levels in Human Blood
PublicationIn this paper, a low-coherence Fabry-Perot sensor with a spectrally measured signal processing response to the refractive index of liquids is presented. Optical fiber sensors are potentially capable of continuous measuring hematocrit levels in blood. Low-coherence Fabry-Perot interferometric sensors offer a robust solution, where information about the measurand is encoded in the full spectrum of light reflected from the sensing...
-
Incorporation of nitrogen in diamond films - A new way of tuning parameters for optical passive elements
PublicationThis paper investigates the impact of nitrogen incorporation in diamond films for the construction of an interferometric sensor to measure displacement. Diamond films with different nitrogen levels (0–5%) were deposited on silicon substrates by microwave plasma enhanced chemical vapor deposition. The structural characteristics of these samples are characterized using scanning electron microscopy (SEM), atomic force microscopy...
-
Low-Coherence Interferometer with Nanocrystalline Diamond Films with Potential Application to Measure Small Biological Samples
PublicationThe study investigates a case of a low-coherence fiber-optic Fabry–Prerot interferometer with a nanocrystalline diamond (NCD) mirror. The method of achieving double density of interference fringes is proposed by the application of birefringent material in the cavity of the interferometer. It can be used to reduce sample volume in comparison to conventional interferometers. The use of a biocompatible diamond mirror makes it specifically...
-
Modeling of multi-cavity Fabry-Perot optical fiber sensors
PublicationReflectance characteristics of a two-cavity extrinsic Fabry-Perot optical fiber sensor were investigated using computer modeling. Calculations were performed using a plane wave-based approach, selected for clarity of results. Based on the modeling results, it can be concluded that the two-cavity Fabry-Perot interferometer can be used to measure two different quantities, such as refractive index and temperature, independently. It...
-
Biophotonic low-coherence sensors with boron-doped diamond thin layer
PublicationLow-coherence sensors using Fabry-Perot interferometers are finding new applications in biophotonic sensing, especially due to the rapid technological advances in the development of new materials. In this paper we discuss the possibility of using boron-doped nanodiamond layers to protect mirror in a Fabry-Perot interferometer. A low-coherence sensor using Fabry-Perot interferometer with a boron-doped nanodiamond (B-NCD) thin protective...
-
The use of thin diamond films in fiber optic low-coherence interferometers”
PublicationIn this paper we present the use of thin diamond films in fiber-optic low-coherence interferometers. Two kinds of diamond surfaces were used: undoped diamond film and boron-doped diamond film. They were deposited on glass plates as well as silicon layers. A conventionally used mirror was used as a reference layer. Diamond films were deposited using Microwave Plasma Enhanced Chemical Vapour Deposition (μPE CVD) system. Measurements...
-
Surface quality control of a thin SiN layer by optical measurements
PublicationFiber optic interferometers have a wide range of applications, including biological and chemical measurements. Nevertheless, in the case of a reflective interferometer setup, standard silver mirrors cannot be used in every measurement, due to their chemical activity. This work investigates the surface quality of a thin optical layer of silicon nitride (SiN), which can serve as an alternative material for silver mirrors. We present...
-
Effect of temperature change on refractive index of an egg white and yolk: a preliminary study
PublicationIn this article, the refractive index of an egg white and yolk depending on temperature in range 30 - 47 °C over 1550 nm was determined. The measurement head was constructed as fiber optic Fabry-Perot interferometer with interference between polished fiber end-face and aluminum weighing dish. The measurement setup has been made of an optical spectrum analyzer, a superluminescent diode with a central wevelength of 1550 nm, 2:1 fiber...
-
The silver layers in fiber-optic sensors
PublicationIn this paper a method of application of the silver layers on the surface of an optical fiber was proposed. The optical properties and surface quality of the silver layer was examined by optical microscopy. The reflection and transmission of the sample were investigated. To evaluate the silver mirror it was placed in a fiber optic Fabry-Perot interferometer and the quality of the spectra was analyzed. The commercial mirror was...
-
Stability of thin film diamond mirror for applications in interferometers under the short-time exposure on selected aggressive chemicals
PublicationIn presented study a thin boron-doped diamond film was proposed for application in the interferometry as a highly durable optical mirror. The unique properties of the diamond films, like high chemical stability and hardness, allow them to be used even in the chemically aggressive environment, where the commonly used silver mirrors can be susceptible to damage. The investigated nanodiamond layer was fabricated by uPE CVD method...
-
Low-coherence photonic method of electrochemical processes monitoring
PublicationWe present an advanced multimodality characterization platform for simultaneous optical and electrochemical measurements of ferrocyanides. Specifcally, we combined a fber-optic Fabry– Perot interferometer with a three-electrode electrochemical setup to demonstrate a proof-ofprinciple of this hybrid characterization approach, and obtained feasibility data in its monitoring of electrochemical reactions in a boron-doped diamond flm...
-
Implementation of SiN thin film in fiber-optic sensor working in telecommunication range of wavelengths
PublicationMirrors are used in optical sensors and measurement setups. This creates a demand for mirrors made of new materials and having various properties tailored to specific applications. In this work, we propose silicon covered with a thin silicon nitride layer as a mirror for near-infrared measurements. SiN layer was deposited on a standard silicon wafer with a Low-Pressure Chemical Vapor Deposition furnace. Then, the created layer...
-
Global Complex Roots and Poles Finding Algorithm in C × R Domain
PublicationAn algorithm to find the roots and poles of a complex function depending on two arguments (one complex and one real) is proposed. Such problems are common in many fields of science for instance in electromagnetism, acoustics, stability analyses, spectroscopy, optics, and elementary particle physics. The proposed technique belongs to the class of global algorithms, gives a full picture of solutions in a fixed region ⊂ C × R and...
-
Incorporation of nitrogen in diamond films – A new way of tuning parameters for optical passive elements
PublicationThis paper investigates the impact of nitrogen incorporation in diamond films for the construction of an interferometric sensor to measure displacement. Diamond films with different nitrogen levels (0–5%) were deposited on silicon substrates by microwave plasma enhanced chemical vapor deposition. The structural characteristics of these samples are characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), confocal...
-
Preparation and Characterization of Microsphere ZnO ALD Coating Dedicated for the Fiber-Optic Refractive Index Sensor
PublicationWe report the fabrication of a novel fiber-optic sensor device, based on the use of a microsphere conformally coated with a thin layer of zinc oxide (ZnO) by atomic layer deposition (ALD), and its use as a refractive index sensor. The microsphere was prepared on the tip of a single-mode optical fiber, on which a conformal ZnO thin film of 200 nm was deposited using an ALD process based on diethyl zinc (DEZ) and water at 100 °C....
-
Nanocrystalline diamond sheets as protective coatings for fiber-optic measurement head
PublicationFiber-optic sensors find numerous applications in science and industry, but their full potential is limited because of the risk of damaging the measurement head, in particular, due to the vulnerability of unprotected tips of the fiber to mechanical damage and aggressive chemical agents. In this paper, we report the first use of a new nanocrystalline diamond structure in a fiber-optic measurement head as a protective coating of...
-
Computer Support of Analysis of Optical Spectra Measurements
PublicationThe verification of measurement errors has a big impact on the assessment of the accuracy of conducted measurements and obtained results. In many cases, computer simulation results are compared with measurement results in order to evaluate measurement errors. The purpose of our research was to check the accuracy of measurements made with a Fabry–Perot interferometer working in the transmission mode. In the measurement setup, a...
-
Computer support of analysis optical spectra measurements
PublicationVerification of measurement errors has a big impact on assessment of accuracy of conducted measurements and obtained results. In many cases computer simulation results are compared with measurement results in order to evaluate measurement errors. The purpose of our research was to check the accuracy of measurements made with Fabry-Perot interferometer working in the transmission mode. In measurement setup, a 1310 nm superluminescent...
-
Polarization interferometer using a Liquid Crystalline Polymer waveplate for wavelength measurement
PublicationA two-beam polarization interferometer for measuring wavelength changes of a tunable semiconductor laser was designed, built and tested. This interferometer uses a λ/8 waveplate made from Liquid Crystalline Polymer in order to generate two output signals in quadrature. The λ/8 waveplate can be manufactured either on a beamsplitter face or on the mirror surface, reducing the cost and complexity of the optomechnical assembly. Experiment...