Filters
total: 3449
-
Catalog
- Publications 2491 available results
- Journals 248 available results
- Conferences 28 available results
- Publishing Houses 1 available results
- People 187 available results
- Projects 9 available results
- Laboratories 1 available results
- e-Learning Courses 247 available results
- Events 80 available results
- Open Research Data 157 available results
displaying 1000 best results Help
Search results for: SALT LEACHING
-
Novel Analytic-Numerical Model of Free Convection: with Leading Edge Considered
PublicationA novel solution of the free convection boundary problem is represented in analytical form for velocity and temperature for an isothermal vertical plate, as an example. These fields are built as a Taylor Series in the x coordinate with coefficients as functions of the vertical coordinate (y). We restrict ourselves by cubic approximation for both functions. The basic Navier-Stokes and Fourier-Kirchhoff equations and boundary conditions...
-
Edyta Gołąb-Andrzejak dr hab.
People -
Journal of Teaching English for Specific and Academic Purposes
Journals -
E-Journal of Business Education & Scholarship of Teaching
Journals -
HISPANIA-A JOURNAL DEVOTED TO THE TEACHING OF SPANISH AND PORTUGUESE
Journals -
Bis(diisopropylammonium) thiosulfate and bis(tert-butylammonium) thiosulfate
PublicationTwo new dialkylammonium thiosulfates, namely bis(diisopropylammonium) thiosulfate, 2C6H16N+S2O3 2-, (I), and bis(tert-butylammonium) thiosulfate, 2C4H12N+S2O3 2-, (II), have been characterized. The secondary ammonium salt (I) crystallizes with Z = 4, while the primary ammonium salt (II), with more...
-
EMAS (merger of DALT, AOSE and PROMAS)
Conferences -
Development of thin film SPME sorbents based on deep eutectic solvents and their application for isolation and preconcentration of endocrine-disrupting compounds leaching from diapers to urine
PublicationIn this study, the thin film solid phase microextraction (TF-SPME) based on a novel sorbent composed of deep eutectic solvent (DES) is proposed. Among several synthesized sorbents the most efficient was DES containing trihexyl(tetradecyl)phosphonium chloride and docosanol mixed with polydimethylsiloxane (PDMS) in a molar ratio 1:3:0.25 to achieve a more stable structure. The proposed sorbent was applied on a fiberglass mesh and...
-
XRD patterns of V2O5 thin films deposited on isotropic etching silicon substrates (111)
Open Research DataThe DataSet contains the XRD patterns of V2O5 thin films deposited on isotropic etching silicon substrates (111). The silicon wafers were etched in a mixture of nitric acid, hydrofluoric acid, and acetic acid in the ratio of 40:1:15. The soaking time for the substrates was from 30 to 90 seconds. The thin films were obtained by the sol-gel method. ...
-
SEM micrographs of V2O5 thin films deposited on isotropic etching silicon substrates (111)
Open Research DataThe DataSet contains the scanning electron microscopy (SEM) micrographs of V2O5 thin films deposited on isotropic etching silicon substrates (111). The silicon wafers were etched in a mixture of nitric acid, hydrofluoric acid, and acetic acid in the ratio of 40:1:15. The soaking time for the substrates was from 30 to 90 seconds. The thin films were...
-
Application of multivariate mathematical-statistical methods to compare reversed-phase thin-layer and liquid chromatographic behaviour of tetrazolium salts in Quantitative Structure-Retention Relationships (QSRR) studies
Publication -
THE EFFECTIVENESS OF PEER TUTORING IN THE FIELD OF TEACHING BASIC ASTRONOMICAL CONCEPTS AMONG OLDER PRESCHOOLERS AND YOUNGER PUPILS. A QUANTITATIVE ANALYSIS
Publication -
Jubileusz 40-lecia pracy dydaktycznej Magister Teresy Szymanik [Celebration of 40 Years of Teaching by Teresa Szymanik, MA]
Publication -
How to teach pharmacology to medical students during the COVID-19 pandemic? Students’ perceptions of novel, online forms of teaching
Publication -
Deep learning techniques for biometric security: A systematic review of presentation attack detection systems
PublicationBiometric technology, including finger vein, fingerprint, iris, and face recognition, is widely used to enhance security in various devices. In the past decade, significant progress has been made in improving biometric sys- tems, thanks to advancements in deep convolutional neural networks (DCNN) and computer vision (CV), along with large-scale training datasets. However, these systems have become targets of various attacks, with...
-
Automated detection of pronunciation errors in non-native English speech employing deep learning
PublicationDespite significant advances in recent years, the existing Computer-Assisted Pronunciation Training (CAPT) methods detect pronunciation errors with a relatively low accuracy (precision of 60% at 40%-80% recall). This Ph.D. work proposes novel deep learning methods for detecting pronunciation errors in non-native (L2) English speech, outperforming the state-of-the-art method in AUC metric (Area under the Curve) by 41%, i.e., from...
-
Optimizing Medical Personnel Speech Recognition Models Using Speech Synthesis and Reinforcement Learning
PublicationText-to-Speech synthesis (TTS) can be used to generate training data for building Automatic Speech Recognition models (ASR). Access to medical speech data is because it is sensitive data that is difficult to obtain for privacy reasons; TTS can help expand the data set. Speech can be synthesized by mimicking different accents, dialects, and speaking styles that may occur in a medical language. Reinforcement Learning (RL), in the...
-
An Adaptive Network Model for a Double Bias Perspective on Learning from Mistakes within Organizations
PublicationAlthough making mistakes is a crucial part of learning, it is still often being avoided in companies as it is considered as a shameful incident. This goes hand in hand with a mindset of a boss who dominantly believes that mistakes usually have negative consequences and therefore avoids them by only accepting simple tasks. Thus, there is no mechanism to learn from mistakes. Employees working for and being influenced by such a boss...
-
Fast Machine-Learning-Enabled Size Reduction of Microwave Components Using Response Features
PublicationAchieving compact size has emerged as a key consideration in modern microwave design. While structural miniaturization can be accomplished through judicious circuit architecture selection, precise parameter tuning is equally vital to minimize physical dimensions while meeting stringent performance requirements for electrical characteristics. Due to the intricate nature of compact structures, global optimization is recommended,...
-
Analyzing the relationship between sound, color, and emotion based on subjective and machine-learning approaches
PublicationThe aim of the research is to analyze the relationship between sound, color, and emotion. For this purpose, a survey application was prepared, enabling the assignment of a color to a given speaker’s/singer’s voice recordings. Subjective tests were then conducted, enabling the respondents to assign colors to voice/singing samples. In addition, a database of voice/singing recordings of people speaking in a natural way and with expressed...
-
Experimental Evaluation of the Agent-Based Population Learning Algorithm for the Cluster-Based Instance Selection
Publication -
Mathematical Modelling and Effect Size Analysis in Support of Searching for the Proteomic Signature of Radiotherapy Toxicity
Publication -
Prediction of Sorption Processes Using the Deep Learning Methods (Long Short-Term Memory)
Publication -
Machine Learning for Control Systems Security of Industrial Robots: a Post-covid-19 Overview
Publication -
The Effectiveness of Using a Pretrained Deep Learning Neural Networks for Object Classification in Underwater Video
Publication -
Likelihood of Transformation to Green Infrastructure Using Ensemble Machine Learning Techniques in Jinan, China
Publication -
Edu Inspiracje WZiE: Active Learning, czyli o mocy aktywnego przetwarzania informacji
Publication -
Machine Learning Methods in Damage Prediction of Masonry Development Exposed to the Industrial Environment of Mines
Publication -
Data-Driven Surrogate-Assisted Optimization of Metamaterial-Based Filtenna Using Deep Learning
PublicationIn this work, a computationally efficient method based on data driven surrogate models is pro-posed for the design optimization procedure of a Frequency Selective Surface (FSS)-based filtering antenna (Filtenna). A Filtenna acts as a as module that simultaneously pre-filters unwanted sig-nals, and enhances the desired signals at the operating frequency. However, due to a typically large number of design variables of FSS unit elements,...
-
Transformational Leadership and Acceptance of Mistakes as a Source of Learning: Poland-USA Cross-Country Study
PublicationThis study explores the influence of transformational leadership on internal innovativeness mediated by mistakes acceptance, including country and industry as factors to be considered and gender and risk-taking attitude as moderators. General findings, primarily based on the US samples (healthcare, construction, and IT industry), confirmed that transformational leadership and internal innovativeness are mediated by mistakes acceptance...
-
Wireless Link Selection Methods for Maritime Communication Access Networks—A Deep Learning Approach
PublicationIn recent years, we have been witnessing a growing interest in the subject of communication at sea. One of the promising solutions to enable widespread access to data transmission capabilities in coastal waters is the possibility of employing an on-shore wireless access infrastructure. However, such an infrastructure is a heterogeneous one, managed by many independent operators and utilizing a number of different communication...
-
Analysis of the Capability of Deep Learning Algorithms for EEG-based Brain-Computer Interface Implementation
PublicationMachine learning models have received significant attention for their exceptional performance in classifying electroencephalography (EEG) data. They have proven to be highly effective in extracting intricate patterns and features from the raw signal data, thereby contributing to their success in EEG classification tasks. In this study, we explore the possibilities of utilizing contemporary machine learning algorithms in decoding...
-
Searching for the primary metabolic alterations of polycystic ovary syndrome by application of the untargeted metabolomics approach
PublicationDespite a large number of studies, the pathogenesis of polycystic ovary syndrome (PCOS) still remains unexplained. In light of ambiguous observations reported in metabolomics, there is a need to carry out studies focusing on confirming the discriminating power of the proposed metabolomics biomarkers. Our research aimed to perform a validation study of metabolites detected in our previous study from serum samples, on the new set...
-
Road traffic can be predicted by machine learning equally effectively as by complex microscopic model
PublicationSince high-quality real data acquired from selected road sections are not always available, a traffic control solution can use data from software traffic simulators working offline. The results show that in contrast to microscopic traffic simulation, the algorithms employing neural networks can work in real-time, so they can be used, among others, to determine the speed displayed on variable message road signs. This paper describes...
-
COVID-19 severity forecast based on machine learning and complete blood count data
PublicationProper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose...
-
COVID-19 severity forecast based on machine learning and complete blood count data
PublicationProper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose...
-
E-LEARNING NA POLITECHNICE GDAŃSKIEJ - HISTORIA ROZWOJU W LATACH 1995-2020
PublicationInternet oraz kształcenie oparte na wykorzystaniu e-technologii stały się nieodłącznym elementem edukacji. Artykuł przedstawia zarys historii rozwoju e-learningu na Politechnice Gdańskiej, przykładowe rozwiązania technologiczne, elementy tworzenia struktur organizacyjnych oraz związanych z legislacją, a także wybrane projekty wykorzystujące szeroko pojęte e-technologie w edukacji akademickiej realizowanej na Uczelni
-
Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures
PublicationMany studies have been performed to put quantifying uncertainties into the seismic risk assessment of reinforced concrete (RC) buildings. This paper provides a risk-assessment support tool for purpose of retrofitting and potential design strategies of RC buildings. Machine Learning (ML) algorithms were developed in Python software by innovative methods of hyperparameter optimization, such as halving search, grid search, random...
-
Forewarned Is Forearmed: Machine Learning Algorithms for the Prediction of Catheter-Induced Coronary and Aortic Injuries
PublicationCatheter-induced dissections (CID) of coronary arteries and/or the aorta are among the most dangerous complications of percutaneous coronary procedures, yet the data on their risk factors are anecdotal. Logistic regression and five more advanced machine learning techniques were applied to determine the most significant predictors of dissection. Model performance comparison and feature importance ranking were evaluated. We identified...
-
Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android Malware Detection
PublicationDue to the exponential rise of mobile technology, a slew of new mobile security concerns has surfaced recently. To address the hazards connected with malware, many approaches have been developed. Signature-based detection is the most widely used approach for detecting Android malware. This approach has the disadvantage of being unable to identify unknown malware. As a result of this issue, machine learning (ML) for detecting malware...
-
Deep learning model for automated assessment of lexical stress of non-native english speakers
Publication -
Detection of circulating tumor cells by means of machine learning using Smart-Seq2 sequencing
Publication -
COMPARATIVE ANALYSIS OF COPING STRATEGIES WITH STRESS OF STUDENTS IN DIFFERENT LEARNING CONDITIONS DURING THE PANDEMIC
Publication -
Urban Food Self-Production in the Perspective of Social Learning Theory: Empowering Self-Sustainability
PublicationUrban food production is becoming an increasingly significant topic in the context of climate change and food security. Conducting research on this subject is becoming an essential element of urban development, deepening knowledge regarding the benefits, challenges, and potential for the development of urban agriculture as an alternative form of food production. Responding to this need, this monograph presents the results of...
-
DentalSegmentator: Robust open source deep learning-based CT and CBCT image segmentation
Publication -
Machine learning goes global: Cross-sectional return predictability in international stock markets
Publication -
Perspektywy wykorzystania technologii internetowych typu E-learning w dydaktyce szkół wyższych.
PublicationArtykuł dotyczy nauczania przez Internet na poziomie uniwersyteckim. Zaprezentowany został model wirtualnego uniwersytetu, który obejmuje materiały dydaktyczne, komunikację, egzaminy i organizację. Artykuł koncentruje się na technicznych zagadnieniach. Przeanalizowano także wpływ wykorzystania technologii E-learning na różne aspekty życia wyższej uczelni.
-
Enhancing environmental literacy through urban technology-based learning. The PULA app case
PublicationThis study addresses the need to enhance environmental literacy, focusing on urban adults through mobile applications, based on the example of PULA app that engages early adopters in gamified pro- environmental activities, offering insights into informal learning. Grounded in 'urban pedagogy,' the study combines semi-structured interviews with 17 application testers and quantitative data analysis, unveiling motivations, user feedback,...
-
Fusion-based Representation Learning Model for Multimode User-generated Social Network Content
PublicationAs mobile networks and APPs are developed, user-generated content (UGC), which includes multi-source heterogeneous data like user reviews, tags, scores, images, and videos, has become an essential basis for improving the quality of personalized services. Due to the multi-source heterogeneous nature of the data, big data fusion offers both promise and drawbacks. With the rise of mobile networks and applications, UGC, which includes...
-
A machine learning approach to classifying New York Heart Association (NYHA) heart failure
PublicationAccording to the European Society of Cardiology, globally the number of patients with heart failure nearly doubled from 33.5 million in 1990 to 64.3 million in 2017, and is further projected to increase dramatically in this decade, still remaining a leading cause of morbidity and mortality. One of the most frequently applied heart failure classification systems that physicians use is the New York Heart Association (NYHA) Functional...