Filters
total: 2636
-
Catalog
- Publications 2124 available results
- Journals 132 available results
- Conferences 22 available results
- Publishing Houses 1 available results
- People 171 available results
- Projects 7 available results
- e-Learning Courses 85 available results
- Events 7 available results
- Offers 1 available results
- Open Research Data 86 available results
displaying 1000 best results Help
Search results for: MACHINE SYNCHRONE
-
Efficient sampling of high-energy states by machine learning force fields
Publication -
Rotor-Flux Vector based Observer of Interior Permanent Synchronous Machine
PublicationThe sensorless control system of the interior permanent magnet machine is considered in this paper. The control system is based on classical linear controllers. In the machine, there occurs non-sinusoidal distribution of rotor flux together with the slot harmonics, which are treated as the control system disturbances. In this case, the classical observer structure in the (d-q) is unstable for the low range of rotor speed resulting...
-
Study of various machine learning approaches for Sentinel-2 derived bathymetry
PublicationIn recent years precise and up-to-date information regarding seabed depth has become more and more important for companies and institutions that operate on coastlines. While direct, in-situ measurements are performed regularly, they are expensive, time-consuming and impractical to be performed in short time intervals. At the same time, an ever-increasing amount of satellite imaging data becomes available. With these images, it...
-
Predictions of cervical cancer identification by photonic method combined with machine learning
PublicationCervical cancer is one of the most commonly appearing cancers, which early diagnosis is of greatest importance. Unfortunately, many diagnoses are based on subjective opinions of doctors—to date, there is no general measurement method with a calibrated standard. The problem can be solved with the measurement system being a fusion of an optoelectronic sensor and machine learning algorithm to provide reliable assistance for doctors...
-
Research on a permanent magnet assisted synchronous reluctance machine with hybrid excitation
Publication -
Modeling lignin extraction with ionic liquids using machine learning approach
PublicationLignin, next to cellulose, is the second most common natural biopolymer on Earth, containing a third of the organic carbon in the biosphere. For many years, lignin was perceived as waste when obtaining cellulose and hemicellulose and used as a biofuel for the production of bioenergy. However, recently, lignin has been considered a renewable raw material for the production of chemicals and materials to replace petrochemical resources....
-
Modular machine learning system for training object detection algorithms on a supercomputer
PublicationW pracy zaprezentowano architekturę systemu służącego do tworzenia algorytmów wykorzystujących metodę AdaBoost i służących do wykrywania obiektów (np. twarzy) na obrazach. System został podzielony na wyspecjalizowane moduły w celu umożliwienia łatwej rozbudowy i efektywnego zrównoleglenia implementacji przeznaczonej dla superkomputera. Na przykład, system może być rozszerzony o nowe cechy i algorytmy ich ekstrakcji bez konieczności...
-
Dangerous sound event recognition using Support Vector Machine classifiers
PublicationA method of recognizing events connected to danger based on their acoustic representation through Support Vector Machine classification is presented. The method proposed is particularly useful in an automatic surveillance system. The set of 28 parameters used in the classifier consists of dedicated parameters and MPEG-7 features. Methods for parameter calculation are presented, as well as a design of SVM model used for classification....
-
Tests on lateral resistance in railway track during operation of tamping machine
PublicationArtykuł prezentuje koncepcję prowadzenia badań oporów poprzecznych w trakcie procesu regulacji geometrycznej toru kolejowego za pomocą podbijarki. Jest to zatem kontynuacja badań nad zastosowaniem podbijarki torowej w diagnostyce toru bezstykowego; wcześniej zajmowano się kwestią określania sił podłużnych w szynach. Przedstawiono sposób wyznaczania oporów poprzecznych polegający na ciągłej rejestracji przemieszczenia oraz siły...
-
The use of tamping machine for diagnosising the longitudinal forces in rails of CWR track
PublicationW pracy przedstawiono przebieg prowadzonych od kilkunastu lat w Politechnice Gdańskiej badań nad wyznaczaniem sił podłużnych w szynach toru bezstykowego. Opisano skonstruowaną aparaturę pomiarową. Badania eksperymentalne polegały na podnoszeniu, a następnie poprzecznym nasuwaniu rusztu torowego za pomocą podbijarki. Rejestrowano przy tym wartości przemieszczeń toru oraz odkształcenia siłowników hydraulicznych. W rezultacie ostatnich...
-
Process of Medical Dataset Construction for Machine Learning-Multifield Study and Guidelines
PublicationThe acquisition of high-quality data and annotations is essential for the training of efficient machine learning algorithms, while being an expensive and time-consuming process. Although the process of data processing and training and testing of machine learning models is well studied and considered in the literature, the actual procedures of obtaining data and their annotations in collaboration with physicians are in most cases...
-
TensorHive: Management of Exclusive GPU Access for Distributed Machine Learning Workloads
PublicationTensorHive is a tool for organizing work of research and engineering teams that use servers with GPUs for machine learning workloads. In a comprehensive web interface, it supports reservation of GPUs for exclusive usage, hardware monitoring, as well as configuring, executing and queuing distributed computational jobs. Focusing on easy installation and simple configuration, the tool automatically detects the available computing...
-
Model-Based Adaptive Machine Learning Approach in Concrete Mix Design
PublicationConcrete mix design is one of the most critical issues in concrete technology. This process aims to create a concrete mix which helps deliver concrete with desired features and quality. Contemporary requirements for concrete concern not only its structural properties, but also increasingly its production process and environmental friendliness, forcing concrete producers to use both chemically and technologically complex concrete...
-
Evaluation of aspiration problems in L2 English pronunciation employing machine learning
PublicationThe approach proposed in this study includes methods specifically dedicated to the detection of allophonic variation in English. This study aims to find an efficient method for automatic evaluation of aspiration in the case of Polish second-language (L2) English speakers’ pronunciation when whole words are analyzed instead of particular allophones extracted from words. Sample words including aspirated and unaspirated allophones...
-
Quantitative Risk Assessment in Construction Disputes Based on Machine Learning Tools
PublicationA high monetary value of the construction projects is one of the reasons of frequent disputes between a general contractor (GC) and a client. A construction site is a unique, one-time, and single-product factory with many parties involved and dependent on each other. The organizational dependencies and their complexity make any fault or mistake propagate and influence the final result (delays, cost overruns). The constant will...
-
Experimental examination and modification of chip suction system in circular sawing machine
PublicationThe article presents the results of experimental examination of the wood chip suction system in the existing sliding table saw before and after its modifi cation. The studies focused on the extraction hood of the mentioned system. The methodical experimental research of the pressure distribution inside the hood during wood chip removal for the selected rotational speed of saw blades of 3500 and 6000 min-1 with a diameter of 300...
-
Real and Virtual Instruments in Machine Learning – Training and Comparison of Classification Results
PublicationThe continuous growth of the computing power of processors, as well as the fact that computational clusters can be created from combined machines, allows for increasing the complexity of algorithms that can be trained. The process, however, requires expanding the basis of the training sets. One of the main obstacles in music classification is the lack of high-quality, real-life recording database for every instrument with a variety...
-
Control system based on the modified multiscalar model for the double fed machine
PublicationPrzedstawiono układ sterowania maszyną asynchroniczą dwustronnie zasilaną wykorzystujący zmodyfikowany model multisaklarny. Wprowadzone nielinowe sprzężenia pozwalają na podział systemu na dwa niezależne podukłady. Pododuje to brak zauważalnych sprzężeń przy regulacji mocy czynnej i biernej regulowanej przez kontrolery PI. W układzie wyeliminowano konieczność stosowania kaskadowego połączenia regulatorów. Przedstawiono wyniki symulacji.
-
Simulation of influence of the air gap asymmetryon voltage waveforms of a synchronous machine
PublicationResults of simulation of a synchronous generator with the air gap asymmetry characterised by eccentricity are presented in the paper. The Lagrange's energy method has been used in derivation of the model equations. Analysis of influence of the air gap asymmetry on characteristics of self and mutual inductances of windings, as well as analysis of induced voltage waveforms as a function of the air gap asymmetry have been performed....
-
Testing motional accuracy of a manufacturing machine - a task imposed on modern maintenance
PublicationArtykuł dotyczy zagadnień utrzymania ruchu maszyn w powiązaniu z problemami parametryzacji zautomatyzowanych napędów. Przedstawiono krótki przegląd i kierunki rozwoju wspomagania komputerowego w ramach zakładowych systemów utrzymania ruchu. Zwrócono uwagę na pomijanie w popularnie publikowanych graficznych modelach systemów informatycznych CIM, ich podsystemów dedykowanych dla wspomagania utrzymania ruchu maszyn, podczas gdy takie...
-
VACCINE
Journals -
Support Vector Machines in Biomedical and Biometrical Applications
Publication -
Text Documents Classification with Support Vector Machines
Publication -
Optimization of the Vibrating Machines with Adjustable Frequency Characteristics
Publication -
Computer Aided Design of Wood Pellet Machines
Publication -
The wave character of commutator wear in electrical machines
PublicationW pracy przedstawiono wyniki badań doświadczalnych zużycia elementów ze styku ślizgowego silnika komutatorowego prądu przemiennego małej mocy. Zakres badań obejmował okresowe pomiary profilu powierzchni ślizgowej komutatora w przekroju poprzecznym oraz profilu powierzchni wycinków komutatora w przekroju podłużnym względem osi wirowania. Ponadto zmierzono okresowe wielkości zużycia powierzchni ślizgowej komutatora oraz szczotek...
-
Surface vaviness of components machined by burnishing method
PublicationPowierzchnię po obróbce wykończeniowej definiuje się zazwyczaj za pomocą parametrów chropowatości. Rosnące wymagania jakościowe w stosunku do wytwarzanych części maszyn powodują rozszerzanie się zakresu parametrów opisujących powierzchnię. W artykule przedstawiono ocenę jakościową powierzchni nagniatanych za pomocą parametrów falistości.
-
Z type Observer Backstepping For Induction Machines
PublicationThis paper contains a relatively new synthesis method for non-linear objects, named backstepping. This method can be used to obtain the observer structure. The paper presents the structure of the speed observer which is a new proposition of observer backstepping with additional state variables marked Z. The rotor speed can be estimated in three different ways. The first is based on the adaptive approach, the second on the nonadaptive...
-
Study washboarding phenomenon in frame sawing machines
PublicationPraca dotyczy zjawiska washboarding cechującego się powstawaniem na piłowanej powierzchni sinusoidalnego profilu w przekroju poprzecznym i wzdłużnym. Wzór ten jest efektem drgań poprzecznych piły. Przedstawiono wyniki analiz teoretycznych oraz badań eksperymentalnych, w których wykazano, że zjawisko w przypadku pilarek ramowych jest efektem drgań wymuszonych brzeszczotu oraz regeneracji powstałej fali pierwotnej.
-
Study washboarding phenomenon in fame sawing machines
PublicationPraca dotyczy zjawiska washboarding cechującego się powstawaniem na piłowanej powierzchni sinusoidalnego profilu w przekroju poprzecznym i wzdłużnym. Wzór ten jest efektem drgań poprzecznych piły. Przedstawiono wyniki analiz teoretycznych oraz badań eksperymentalnych, w których wykazano, że zjawisko w przypadku pilarek ramowych jest efektem drgań wymuszonych brzeszczotu oraz regeneracji powstałej fali pierwotnej.
-
Machine learning for the management of biochar yield and properties of biomass sources for sustainable energy
PublicationBiochar is emerging as a potential solution for biomass conversion to meet the ever increasing demand for sustainable energy. Efficient management systems are needed in order to exploit fully the potential of biochar. Modern machine learning (ML) techniques, and in particular ensemble approaches and explainable AI methods, are valuable for forecasting the properties and efficiency of biochar properly. Machine-learning-based forecasts,...
-
Driver’s Condition Detection System Using Multimodal Imaging and Machine Learning Algorithms
PublicationTo this day, driver fatigue remains one of the most significant causes of road accidents. In this paper, a novel way of detecting and monitoring a driver’s physical state has been proposed. The goal of the system was to make use of multimodal imaging from RGB and thermal cameras working simultaneously to monitor the driver’s current condition. A custom dataset was created consisting of thermal and RGB video samples. Acquired data...
-
Overcoming “Big Data” Barriers in Machine Learning Techniques for the Real-Life Applications
Publication -
Machine learning techniques combined with dose profiles indicate radiation response biomarkers
Publication -
From the Dynamic Lattice Liquid Algorithm to the Dedicated Parallel Computer – mDLL Machine
Publication -
Evaluation of Machine Learning Methods for the Experimental Classification and Clustering of Higher Education Institutions
PublicationHigher education institutions have a big impact on the future of skills supplied on the labour market. It means that depending on the changes in labour market, higher education institutions are making changes to fields of study or adding new ones to fulfil the demand on labour market. The significant changes on labour market caused by digital transformation, resulted in new jobs and new skills. Because of the necessity of computer...
-
Machine Learning and data mining tools applied for databases of low number of records
Publication -
Detection of People Swimming in Water Reservoirs with the Use of Multimodal Imaging and Machine Learning
PublicationEvery year in many countries, there are fatal unintentional drownings in different water reservoirs like swimming pools, lakes, seas, or oceans. The existing threats of this type require creating a method that could automatically supervise such places to increase the safety of bathers. This work aimed to create methods and prototype solutions for detecting people bathing in water reservoirs using a multimodal imaging system and...
-
Machine-aided detection of SARS-CoV-2 from complete blood count
PublicationThe current gold standard for SARS-CoV-2 detection methods lacks the functionality to perform population screening. Complete blood count (CBC) tests are a cost-effective way to reach a wide range of people – e.g. according to the data of the Central Statistical Office of Poland from 2016, there are 3,000 blood diagnostic laboratories in Poland, and 46% of Polish people have at least one CBC test per year. In our work, we show...
-
Machine learning approach to packaging compatibility testing in the new product development process
PublicationThe paper compares the effectiveness of selected machine learning methods as modelling tools supporting the selection of a packaging type in new product development process. The main goal of the developed model is to reduce the risk of failure in compatibility tests which are preformed to ensure safety, durability, and efficacy of the finished product for the entire period of its shelf life and consumer use. This kind of testing...
-
Machine learning-based seismic response and performance assessment of reinforced concrete buildings
PublicationComplexity and unpredictability nature of earthquakes makes them unique external loads that there is no unique formula used for the prediction of seismic responses. Hence, this research aims to implement the most well-known Machine Learning (ML) methods in Python software to propose a prediction model for seismic response and performance assessment of Reinforced Concrete Moment-Resisting Frames (RC MRFs). To prepare 92,400 data...
-
Predicting emotion from color present in images and video excerpts by machine learning
PublicationThis work aims at predicting emotion based on the colors present in images and video excerpts using a machine-learning approach. The purpose of this paper is threefold: (a) to develop a machine-learning algorithm that classifies emotions based on the color present in an image, (b) to select the best-performing algorithm from the first phase and apply it to film excerpt emotion analysis based on colors, (c) to design an online survey...
-
Slowly-closing valve behaviour during steam machine accelerated start-up
PublicationThe paper discusses the state of stress in a slowly-closing valve during accelerated start-up of a steam turbine. The valve is one of the first components affected by high temperature gradients and is a key element on which the power, efficiency and safety of the steam system depend. The authors calibrated the valve model based on experimental data and then performed extended Thermal-FSI analyses relative to experiment. The issue...
-
DNAffinity: a machine-learning approach to predict DNA binding affinities of transcription factors
PublicationWe present a physics-based machine learning approach to predict in vitro transcription factor binding affinities from structural and mechanical DNA properties directly derived from atomistic molecular dynamics simulations. The method is able to predict affinities obtained with techniques as different as uPBM, gcPBM and HT-SELEX with an excellent performance, much better than existing algorithms. Due to its nature, the method can...
-
Multivariate Features Extraction and Effective Decision Making Using Machine Learning Approaches
Publication -
<title>Management system of ELHEP cluster machine for FEL photonics design</title>
Publication -
Influence of frame sawing machine´s kinematics on saw blade tooth wear.
PublicationW pracy przedstawiono wpływ kinematyki pilarki ramowej na zużycie ostrzy piłtrakowych.
-
Advancing Solar Energy: Machine Learning Approaches for Predicting Photovoltaic Power Output
PublicationThis research is primarily concentrated on predicting the output of photovoitaic power, an essential field in the study of renewable energy. The paper comprehensively reviews various forecasting methodologies, transitioning from conventional physical and statistical methods to advanced machine learning (ML) techniques. A significant shift has been observed from traditional point forecasting to machine learning-based forecasting...
-
Variable Resolution Machine Learning Optimization of Antennas Using Global Sensitivity Analysis
PublicationThe significance of rigorous optimization techniques in antenna engineering has grown significantly in recent years. For many design tasks, parameter tuning must be conducted globally, presenting a challenge due to associated computational costs. The popular bio-inspired routines often necessitate thousands of merit function calls to converge, generating prohibitive expenses whenever the design process relies on electromagnetic...
-
Preeclampsia Risk Prediction Using Machine Learning Methods Trained on Synthetic Data
PublicationThis paper describes a research study that investigates the use of machine learning algorithms on synthetic data to classify the risk of developing preeclampsia by pregnant women. Synthetic datasets were generated based on parameter distributions from three real patient studies. Four models were compared: XGBoost, Support Vector Machine (SVM), Random Forest, and Explainable Boosting Machines (EBM). The study found that the XGBoost...