Filtry
wszystkich: 391
wybranych: 352
Wyniki wyszukiwania dla: QUANTUM INFORMATION
-
Duhem and Natanson: Two Mathematical Approaches to Thermodynamics
PublikacjaIn this article, the previously unrecognized contributions of Pierre Duhem and Ladislavus Natanson in thermodynamics are shown. The mathematical remodelling of a few of their principal ideas is taken into consideration, despite being neglected in the literature. To emphasize these ideas in an appropriate epistemological order, it would be crucial to first revalue and reconstruct some underrepresented parts of the proceedings process...
-
Analytical progress on symmetric geometric discord: Measurement-based upper bounds
PublikacjaQuantum correlations may be measured by means of the distance of the state to the subclass ofstates having well defined classical properties. In particular, a geometric measure of asymmetricdiscord [Daki´c et al., Phys. Rev. Lett. 105, 190502 (2010)] was recently defined as the Hilbert-Schmidt distance of a given two-qubit state to the closest classical-quantum (CQ) correlated state.We analyze a geometric measure of symmetric...
-
Constructive entanglement test from triangle inequality
PublikacjaWe derive a simple lower bound on the geometric measure of entanglement for mixed quantum states in the case of a general multipartite system. The main ingredient of the presented derivation is the triangle inequality applied to the root infidelity distance in the space of density matrices. The obtained bound leads to entanglement criteria with a straightforward interpretation. The proposed criteria provide an experimentally accessible,...
-
The adiabatic potentials of low-lying electronic states of the NaRb molecule
PublikacjaAdiabatic potential energy curves and spectroscopic constants have been calculated for the NaRb molecule. The results of ten states of the symmetry Σ+, six states of the symmetry Π, and two states of the symmetry Δ are obtained by the nonrelativistic quantum chemical method used with pseudopotentials describing the interaction of valence electrons with atomic cores. Analysis is based on a comparison with the results of other theoretical...
-
Computed vibrational excitation ofCF4by low-energy electrons and positrons: Comparing calculations and experiments
PublikacjaQuantum calculations for the excitation of the asymmetric modes of the CF4 target gas, ν3 and ν4, by impact of low-energy electrons and positrons are carried out in the energy range around 1 eV and are compared with recent experimental findings. The similarities and differences between the two types of projectiles, and the two different modes, are analyzed and discussed vis à vis the present accord with the experimental results.
-
Impact of dyes isomerization effect on the charge transfer phenomenon occurring on the dye/nanosemiconductor interface
PublikacjaThe present work aimed to find the answer how does the isomerization of the Ru based dyes affect the overall photon-to-current efficiency of the DSSCs and to explain the charge transfer phenomenon occurring on the dye/ nanosemiconductor interface. Therefore, electronic and optical properties of three bipyridine derivatives anchored on the TiO2 electrode were investigated by computational simulations based on quantum chemistry codes...
-
Enhancement of the Magnetic Coupling in Exfoliated CrCl 3 Crystals Observed by Low‐Temperature Magnetic Force Microscopy and X‐ray Magnetic Circular Dichroism
PublikacjaMagnetic crystals formed by 2D layers interacting by weak van der Waals forces are currently a hot research topic. When these crystals are thinned to nanometric size, they can manifest strikingly different magnetic behavior compared to the bulk form. This can be the result of, for example, quantum electronic confinement effects, the presence of defects, or pinning of the crystallographic structure in metastable phases induced by...
-
Capping ligand initiated CuInS2 quantum dots decoration on, ZnIn2S4 microspheres surface under different alkalinity levels resulting in different hydrogen evolution performance
PublikacjaSurface distribution of quantum dots (QDs) at the semiconductor matrix caused by synthesis condition (e.g. pH of solution during coupling) could lead to different photocatalytic activity. Thus, achieving an optimal covering of semiconductor matrix by QDs has been challenging. Herein, the influence of the alkalinity level of aqueous decoration medium for the coupling of mercaptoundecanoic acid (MUA) capped CuInS2 quantum dots (CIS)...
-
Unraveling the role of boron dimers in the electrical anisotropy and superconductivity in boron-doped diamond
PublikacjaWe use quantum mechanics (QM) to determine the states formed by B dopants in diamond. We find that isolated B sites prefer to form BB dimers and that the dimers pair up to form tetramers (BBCBB) that prefer to aggregate parallel to the (111) surface in the <110> direction, one double layer below the H-terminated surface double layer. These tetramers lead to metallic character (Mott metal Insulator Transition) with holes in the...
-
Experimental Extraction of Secure Correlations from a Noisy Private State
PublikacjaWe report experimental generation of a noisy entangled four-photon state that exhibits a separation between the secure key contents and distillable entanglement, a hallmark feature of the recently established quantum theory of private states. The privacy analysis, based on the full tomographic reconstruction of the prepared state, is utilized in a proof-of-principle key generation. The inferiority of distillation-based strategies...
-
DFT studies of the refractive index of boron-doped diamond
PublikacjaThe density functional theory is one of the optimal solutions in calculation of optical properties of materials on the quantum scale. In this paper, we have investigated the refractive index of a boron-doped diamond structure with the usage of Atomistic Toolkit software from Synopsys. During this study, various methods and pseudopotentials were checked to obtain an optimal performanceaccuracy method for calculation of such materials....
-
Crystallization of space: Space-time fractals from fractal arithmetic
PublikacjaFractals such as the Cantor set can be equipped with intrinsic arithmetic operations (addition, subtraction, multiplication, division) that map the fractal into itself. The arithmetics allows one to define calculus and algebra intrinsic to the fractal in question, and one can formulate classical and quantum physics within the fractal set. In particular, fractals in space-time can be generated by means of homogeneous spaces associated...
-
Absolute configurations of C34 and C35 of antibiotic niphimycin A
PublikacjaThe relative configurations of four stereogenic centers of the C33-C42 fragment of niphimycin A were assigned as 2S*, 3R*, 4S* and 6S*, based upon (1)H NMR analysis with double-quantum filtered COSY and nuclear Overhauser spectroscopy experiments. These data were then correlated with absolute configurations at C36 and C38 of niphimycin A, which were declared previously as 36S and 38S [3]. This allowed for the assignment of the...
-
Quantum dots in gas sensing a review
PublikacjaAir pollution becomes an increasing problem in the recent years. There is a need to develop more sensitive gas sensors. Much effort has been performed to develop different types of gas sensors, such as electrochemical sensors or polymer sensors. One of the most promising approaches to improve sensors performance is the application of the nanostructures as sensing materials. State of the art of quantum...
-
A dipole-driven path for electron and positron attachments to gas-phase uracil and pyrimidine molecules: a quantum scattering analysis
PublikacjaElectron and positron scattering processes in the gas-phase are analysed for uracil and pyrimidine molecules using a multichannel quantum approach at energies close to threshold. The special effects on the scattering dynamics induced by the large dipole moments in both molecules on the spatial features of the continuum leptonic wavefunctions are here linked to the possible bound states of the Rydberg-like molecular anions or ‘positroned’...
-
A new quantum-inspired approach to reduce the blocking probability of demands in resource-constrained path computation scenarios
PublikacjaThis article presents a new approach related with end-to-end routing, which, owing to quantum-inspired mecha-nisms of prediction of availability of network resources, results in improved blocking probability of incoming requests to establish transmission paths. The proposed scheme has been analyzed for three network topologies and several scenarios of network load. Obtained results show a significant (even twofold) reduction of...
-
Intramolecular transformation of an antifungal antibiotic nystatin A1 into its isomer, iso-nystatin A1 - structural and molecular modeling studies
PublikacjaNystatin A1, a polyene macrolide antifungal antibiotic, in a slightly basic or acidic solution undergoes an intramolecular transformation, yielding a structural isomer, the translactonization product, iso-nystatin A1 with lactone ring diminished by two carbon atoms. Structural evidence is provided by advanced NMR and Mass Spectrometry (MS) studies. Molecular dynamics simulations and quantum mechanics calculations gave the insight...
-
Absolute configurations of C34 and C35 of antibiotic niphimycin A
PublikacjaThe relative configurations of four stereogenic centers of the C33-C42 fragment of niphimycin A were assigned as 2S*, 3R*, 4S* and 6S*, based upon 1H NMR analysis with double-quantum filtered COSY and nuclear Overhauser spectroscopy experiments. These data were then correlated with absolute configurations at C36 and C38 of niphimycin A, which were declared previously as 36S and 38S [3]. This allowed for the assignment of the absolute...
-
Practical Approach to Large-Scale Electronic Structure Calculations in Electrolyte Solutions via Continuum-Embedded Linear-Scaling Density Functional Theory
PublikacjaWe present the implementation of a hybrid continuum-atomistic model for including the effects of a surrounding electrolyte in large-scale density functional theory (DFT) calculations within the Order-N Electronic Total Energy Package (ONETEP) linear-scaling DFT code, which allows the simulation of large complex systems such as electrochemical interfaces. The model represents the electrolyte ions as a scalar field and the solvent...
-
Arithmetic Loophole in Bell's Theorem: Overlooked Threat to Entangled-State Quantum Cryptography
PublikacjaBell’s theorem is supposed to exclude all local hidden-variable models of quantum correlations. However,an explicit counterexample shows that a new class of local realistic models, based on generalized arith-metic and calculus, can exactly reconstruct rotationally symmetric quantum probabilities typical oftwo-electron singlet states. Observable probabilities are consistent with the usual arithmetic employedby macroscopic observers...
-
On coertia and inertia in aspects of Natanson’s nonlinear extended thermodynamics
PublikacjaIn this article, the previously underrepresented contributions of Natanson to the field of thermodynamics have been presented. In order to identify a source of irreversibility at Nature, Natanson introduced the concept of Coertia, which is similar to inertia. Natanson’s Coertia is a fundamental property of space that is responsible for every irreversible phenomena in matter, as well as in the electromagnetic and gravitational fields....
-
On the origin of surfaces-dependent growth of benzoic acid crystal inferred through the droplet evaporation method
PublikacjaCrystal growth behavior of benzoic acid crystals on different surfaces was examined. The performed experiments documented the existence of very strong influence introduced by polar surfaces as glass, gelatin, and polyvinyl alcohol (PVA) on the growth of benzoic acid crystals. These surfaces impose strong orientation effect resulting in a dramatic reduction of number of faces seen with x-ray powder diffractions (XPRD). However,...
-
On the origin of surfaces-dependent growth of benzoic acid crystal inferred through the droplet evaporation method
PublikacjaCrystal growth behavior of benzoic acid crystals on different surfaces was examined. The performed experiments documented the existence of very strong influence introduced by polar surfaces as glass, gelatin, and polyvinyl alcohol (PVA) on the growth of benzoic acid crystals. These surfaces impose strong orientation effect resulting in a dramatic reduction of number of faces seen with x-ray powder diffractions (XPRD). However,...
-
On the origin of surfaces-dependent growth of benzoic acid crystal inferred through the droplet evaporation method
PublikacjaCrystal growth behavior of benzoic acid crystals on different surfaces was examined. The performed experiments documented the existence of very strong influence introduced by polar surfaces as glass, gelatin, and polyvinyl alcohol (PVA) on the growth of benzoic acid crystals. These surfaces impose strong orientation effect resulting in a dramatic reduction of number of faces seen with x-ray powder diffractions (XPRD). However,...
-
Electrochemical, theoretical and surface physicochemical studies of the alkaline copper corrosion inhibition by newly synthesized molecular complexes of benzenediamine and tetraamine with π acceptor
PublikacjaTwo charge transfer complexes, namely [(BDAH)+(PA−)] CT1 [(BTAH)2+(PA−)2] and CT2 (BDAH = 1,2-benzenediamine, BTAH = 1,2,4,5-benzenetetramine, and PA− = 2,4,6-trinitrophenolate), were synthesized and fully characterized using various spectroscopic techniques. CT1 and CT2 were tested as inhibitors to effectively control the uniform and anodic corrosion processes of copper in an alkaline electrolyte (1.0 M KOH) using various electrochemical...
-
Factory Acceptance Test – Strain Gauge Measurement, Report no: WOiO /II/123/2014
PublikacjaTested object was 40 meters long jib and its foundation, placed in Gdansk Shiprepair Yard, manufactured by KMK. The contruction was dedicated to the passenger cruise vessel "Quantum of the Seas" The Strain Gauge measurement in different location and load situation was done in order to validate calculation finite element models used during strength analysis for project. The expertise contains: methodology of the measurements, description...
-
Multipartite secret key distillation and bound entanglement
PublikacjaRecently it has been shown that quantum cryptography beyond pure entanglement distillation is possible and a paradigm for the associated protocols has been established. Here we systematically generalize the whole paradigm to the multipartite scenario. We provide constructions of new classes of multipartite bound entangled states, i.e., those with underlying twisted Greenberger-Horne-Zeilinger (GHZ) structure and nonzero distillable...
-
Strahlungslose Übertragung von Elektronenanregungsenergie bei zweidimensionalen lumineszierenden Systemen
PublikacjaAn expression for the photoluminescence (PhL) quantum yield of donors in two-dimensional systems as depending on the concentration ratio nD'/nA' of donors and acceptors has been obtained. In the particular case nD' ⪡ nA' the expression reduces to the form given by other authors. The obtained formula can also be applied to the description of the concentrational quenching of PhL when dimers act as acceptors. The theory has been...
-
THIRD-ORDER EXPONENTIAL INTEGRATOR FOR LINEAR KLEIN–GORDON EQUATIONS WITH TIME AND SPACE-DEPENDANT MASS
PublikacjaAllowing for space- and time-dependance of mass in Klein–Gordon equations re- solves the problem of negative probability density and of violation of Lorenz covariance of interaction in quantum mechanics. Moreover it extends their applicability to the domain of quantum cosmology, where the variation in mass may be accompanied by high oscillations....
-
THIRD-ORDER EXPONENTIAL INTEGRATOR FOR LINEAR KLEIN–GORDON EQUATIONS WITH TIME AND SPACE-DEPENDANT MASS
PublikacjaAllowing for space- and time-dependance of mass in Klein–Gordon equations re- solves the problem of negative probability density and of violation of Lorenz covariance of interaction in quantum mechanics. Moreover it extends their applicability to the domain of quantum cosmology, where the variation in mass may be accompanied by high oscillations....
-
The Quantum Efficiency Roll-Off Effect in Near-Infrared Organic Electroluminescent Devices with Iridium Complexes Emitters
PublikacjaThe electroluminescence quantum efficiency roll-off in iridium(III)-based complexes, namely Ir(iqbt)2(dpm) and Ir(iqbt)3(iqbt=1 (benzo[b]thiophen-2-yl)-isoquinolinate, dpm=2,2,6,6-tetramethyl-3,5-heptanedionate) utilized as near-infrared emitters in organic light emitting diodes with remarkable external quantum efficiencies, up to circa 3%, 1.5% and 1%, are measured and analyzed. With a 5–6 weight % of emitters embedded...
-
Fabrication of Durable Ordered Ta2O5 Nanotube Arrays Decorated with Bi2S3 Quantum Dots
PublikacjaOne of the most important challenges in the fabrication of ordered tantalum pentaoxide (Ta2O5) nanotube arrays (NTs) via the electrochemical method is the formation of nanotubes that adhere well to the Ta substrate. In this paper, we propose a new protocol that allows tight-fitting Ta2O5 nanotubes to be obtained through the anodic oxidation of tantalum foil. Moreover, to enhance their activity in the photocatalytic reaction, in...
-
Synergy between AgInS2 quantum dots and ZnO nanopyramids for photocatalytic hydrogen evolution and phenol degradation
PublikacjaDespite the unique properties of single semiconductor nanomaterials and quantum dots, poor photocatalytic activity has characterized them and the fabrication of nanocomposites has become necessary to enhance their photocatalytic performance. Thus, AgInS2 quantum dots (AIS QDs, 4.0±1.6 nm), have been successfully prepared and loaded onto ZnO nanopyramids (ZnO NPy). The effect of the nominal amount of AIS QDs decorating ZnO NPy on...
-
Structural, physicochemical and anticancer study of Zn complexes with pyridyl-based thiazolyl-hydrazones
PublikacjaThiazolyl-hydrazones (THs) exhibit a wide spectrum of biological activity that can be enhanced by complexation with various metal ions. Zn(II) complexes with α-pyridine-1,3-TH ligands may represent an alternative to the standard platinum-based chemotherapeutics. In addition, they show photoluminescence properties and thus can be regarded as multifunctional materials. In this study, we synthesized and characterized three neutral...
-
Sharp transitions in low-number quantum dots Bayesian magnetometry
PublikacjaWe consider Bayesian estimate of static magnetic field, characterized by a prior Gaussian probability distribution, in systems of a few electron quantum dot spins interacting with infinite temperature spin environment via hyperfine interaction. Sudden transitions among optimal states and measurements are observed. Usefulness of measuring occupation levels is shown for all times of the evolution, together with the role of entanglement...
-
Electrochemistry from first-principles in the grand canonical ensemble
PublikacjaProgress in electrochemical technologies, such as automotive batteries, supercapacitors, and fuel cells, depends greatly on developing improved charged interfaces between electrodes and electrolytes. The rational development of such interfaces can benefit from the atomistic understanding of the materials involved by first-principles quantum mechanical simulations with Density Functional Theory (DFT). However, such simulations are...
-
Natural Deep Eutectic Solvents as Agents for Improving Solubility, Stability and Delivery of Curcumin
PublikacjaPurpose Study on curcumin dissolved in natural deep eutectic solvents (NADES) was aimed at exploiting their beneficial properties as drug carriers. Methods The concentration of dissolved curcumin in NADES was measured. Simulated gastrointestinal fluids were used to determine the concentration of curcumin and quantum chemistry computations were performed for clarifying the origin of curcumin solubility enhancement in NADES. Results NADES...
-
Stannates, titanates and tantalates modified with carbon and graphene quantum dots for enhancement of visible-light photocatalytic activity
PublikacjaMost efforts in heterogeneous photocatalysis are focused on development of new and stable photoactive materials efficient in degradation of various pollutants under visible-light irradiation. In this regard, the wide-bandgap perovskite semiconductors, i.e., SrTiO3 (titanate), SrSnO3 (stannate) and AgTaO3 (tantalate), were prepared by a solvothermal method, and then modified with carbon quantum dots (CQDs) or graphene quantum dots...
-
In vitro biological evaluation of a novel folic acid-targeted receptor quantum dot−β−cyclodextrin carrier for C-2028 unsymmetrical bisacridine in the treatment of human lung and prostate cancers
PublikacjaTraditional small-molecule chemotherapeutics usually do not distinguish tumors from healthy tissues. However, nanotechnology creates nanocarriers that selectively deliver drugs to their site of action. This work is the next step in the development of the quantum dot−β−cyclodextrin−folic acid (QD−β−CD−FA) platform for targeted and selected delivery of C−2028 unsymmetrical bisacridine in cancer therapy.Herein, we report an initial...
-
Trade-offs in multiparty Bell-inequality violations in qubit networks
PublikacjaTwo overlapping bipartite binary input Bell inequalities cannot be simultaneously violated as this would contradict the usual no-signalling principle. This property is known as monogamy of Bell inequality violations and generally Bell monogamy relations refer to trade-offs between simultaneous violations of multiple inequalities. It turns out that multipartite Bell inequalities admit weaker forms of monogamies that allow for violations...
-
Binary-Encounter Model for Direct Ionization of Molecules by Positron-Impact
PublikacjaWe introduce two models for the computation of direct ionization cross sections by positron impact over a wide range of collision energies. The models are based on the binary-encounter-Bethe model and take into account an extension of the Wannier theory. The cross sections computed with these models show good agreement with experimental data. The extensions improve the agreement between theory and experiment for collision energies...
-
Dynamics of quantum entanglement
PublikacjaA model of discrete dynamics of entanglement of a bipartite quantum state is considered. It involves a global unitary dynamics of the system and periodic actions of local bistochastic or decaying channel. For initially pure states the decay of entanglement is accompanied by an increase of von Neumann entropy of the system. We observe and discuss revivals of entanglement due to unitary interaction of subsystems. For some mixed states...
-
All Nonclassical Correlations Can Be Activated into Distillable Entanglement
PublikacjaWe devise a protocol in which general nonclassical multipartite correlations produce a physically relevant effect, leading to the creation of bipartite entanglement. In particular, we show that the relative entropy of quantumness, which measures all nonclassical correlations among subsystems of a quantum system, is equivalent to and can be operationally interpreted as the minimum distillable entanglement generated between the system...
-
Free randomness amplification using bipartite chain correlations
PublikacjaA direct analysis of the task of randomness amplification from Santha-Vazirani sources using the violation of the chained Bell inequality is performed in terms of the convex combination of no-signaling boxes required to simulate quantum violation of the inequality. This analysis is used to find the exact threshold value of the initial randomness parameter from which perfect randomness can be extracted in the asymptotic limit of...
-
Jahn-Teller and related conical intersections in the benzene radical cation and the monofluoro derivate
PublikacjaThe multi-state multi-mode vibronic interactions in the benzene radical cation and its monofluoro derivative have been investigated theoretically, based on high-level electronic structure calculations for the system parameters and a quantum treatment of the nuclear motion. The available experimental data are well reproduced. The interplay of different vibronic coupling mechanisms is pointed out leading to multiple nonadiabatic...
-
Potential energy surfaces of the low-lying electronic states of the Li+LiCs system
PublikacjaAb initio quantum chemistry calculations are performed for the mixed alkali triatomic system. Global minima of the ground and first excited doublet states of the trimer are found and Born-Oppenheimer potential energy surfaces of the Li atom interacting with the LiCs molecule were calculated for these states. The lithium atom is placed at various distances and bond angles from the lithium-caesium dimer. Three-body nonadditive forces...
-
Entanglement and Nonlocality are Inequivalent for Any Number of Parties
PublikacjaUnderstanding the relation between nonlocality and entanglement is one of the fundamental problems in quantum physics. In the bipartite case, it is known that these two phenomena are inequivalent, as there exist entangled states of two parties that do not violate any Bell inequality. However, except for a single example of an entangled three-qubit state that has a local model, almost nothing is known about such a relation in multipartite...
-
Inequivalence of entanglement, steering, and Bell nonlocality for general measurements
PublikacjaEinstein-Podolsky-Rosen steering is a form of inseparability in quantum theory commonly acknowledged to be intermediate between entanglement and Bell nonlocality. However, this statement has so far only been proven for a restricted class of measurements, namely, projective measurements. Here we prove that entanglement, one-way steering, two-way steering, and nonlocality are genuinely different considering general measurements,...
-
Low-energy positron scattering from gas-phase uracil
PublikacjaQuantum scattering calculations are presented for the interaction of low energy positrons with the uracil molecule, an important component of biological systems. The rotational elastic and inelastic cross sections and vibrational inelastic cross sections are reported and compared with existing experiments, indicating a general trend of the cross sections different from the experimental findings and in line with what should be expected...
-
The influence of anchoring group position in ruthenium dye molecule on performance of dye-sensitized solar cells
PublikacjaThe effect of anchoring group position and, in consequence, the orientation of the ruthenium dye molecule on titania surface on the performance of dye-sensitized solar cells has been studied intensively. Three model ruthenium sensitizing dyes bearing carboxylic anchoring group in ortho, meta or para position were synthesized and well characterized by spectroscopic, electrochemical, photophysical and photochemical measurements....